MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu3op Structured version   Visualization version   GIF version

Theorem reu3op 6195
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.)
Hypothesis
Ref Expression
reu3op.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))
Assertion
Ref Expression
reu3op (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
Distinct variable groups:   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝑌,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reu3op
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 reu3 3662 . 2 (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ∧ ∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞)))
2 reu3op.a . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))
32rexxp 5751 . . 3 (∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎𝑋𝑏𝑌 𝜒)
4 eqeq2 2750 . . . . . . 7 (𝑞 = ⟨𝑥, 𝑦⟩ → (𝑝 = 𝑞𝑝 = ⟨𝑥, 𝑦⟩))
54imbi2d 341 . . . . . 6 (𝑞 = ⟨𝑥, 𝑦⟩ → ((𝜓𝑝 = 𝑞) ↔ (𝜓𝑝 = ⟨𝑥, 𝑦⟩)))
65ralbidv 3112 . . . . 5 (𝑞 = ⟨𝑥, 𝑦⟩ → (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩)))
76rexxp 5751 . . . 4 (∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∃𝑥𝑋𝑦𝑌𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩))
8 eqeq1 2742 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩))
92, 8imbi12d 345 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩)))
109ralxp 5750 . . . . . 6 (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩))
11 eqcom 2745 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)
1211a1i 11 . . . . . . . 8 (((𝑥𝑋𝑦𝑌) ∧ (𝑎𝑋𝑏𝑌)) → (⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
1312imbi2d 341 . . . . . . 7 (((𝑥𝑋𝑦𝑌) ∧ (𝑎𝑋𝑏𝑌)) → ((𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩) ↔ (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
14132ralbidva 3128 . . . . . 6 ((𝑥𝑋𝑦𝑌) → (∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
1510, 14bitrid 282 . . . . 5 ((𝑥𝑋𝑦𝑌) → (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
16152rexbiia 3227 . . . 4 (∃𝑥𝑋𝑦𝑌𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
177, 16bitri 274 . . 3 (∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
183, 17anbi12i 627 . 2 ((∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ∧ ∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞)) ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
191, 18bitri 274 1 (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  cop 4567   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  opreu2reurex  6197
  Copyright terms: Public domain W3C validator