MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu3op Structured version   Visualization version   GIF version

Theorem reu3op 6244
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.)
Hypothesis
Ref Expression
reu3op.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))
Assertion
Ref Expression
reu3op (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
Distinct variable groups:   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝑌,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reu3op
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 reu3 3685 . 2 (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ∧ ∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞)))
2 reu3op.a . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))
32rexxp 5798 . . 3 (∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎𝑋𝑏𝑌 𝜒)
4 eqeq2 2748 . . . . . . 7 (𝑞 = ⟨𝑥, 𝑦⟩ → (𝑝 = 𝑞𝑝 = ⟨𝑥, 𝑦⟩))
54imbi2d 340 . . . . . 6 (𝑞 = ⟨𝑥, 𝑦⟩ → ((𝜓𝑝 = 𝑞) ↔ (𝜓𝑝 = ⟨𝑥, 𝑦⟩)))
65ralbidv 3174 . . . . 5 (𝑞 = ⟨𝑥, 𝑦⟩ → (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩)))
76rexxp 5798 . . . 4 (∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∃𝑥𝑋𝑦𝑌𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩))
8 eqeq1 2740 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩))
92, 8imbi12d 344 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩)))
109ralxp 5797 . . . . . 6 (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩))
11 eqcom 2743 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)
1211a1i 11 . . . . . . . 8 (((𝑥𝑋𝑦𝑌) ∧ (𝑎𝑋𝑏𝑌)) → (⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
1312imbi2d 340 . . . . . . 7 (((𝑥𝑋𝑦𝑌) ∧ (𝑎𝑋𝑏𝑌)) → ((𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩) ↔ (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
14132ralbidva 3210 . . . . . 6 ((𝑥𝑋𝑦𝑌) → (∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
1510, 14bitrid 282 . . . . 5 ((𝑥𝑋𝑦𝑌) → (∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∀𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
16152rexbiia 3209 . . . 4 (∃𝑥𝑋𝑦𝑌𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
177, 16bitri 274 . . 3 (∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞) ↔ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩))
183, 17anbi12i 627 . 2 ((∃𝑝 ∈ (𝑋 × 𝑌)𝜓 ∧ ∃𝑞 ∈ (𝑋 × 𝑌)∀𝑝 ∈ (𝑋 × 𝑌)(𝜓𝑝 = 𝑞)) ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
191, 18bitri 274 1 (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  ∃!wreu 3351  cop 4592   × cxp 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-iun 4956  df-opab 5168  df-xp 5639  df-rel 5640
This theorem is referenced by:  opreu2reurex  6246
  Copyright terms: Public domain W3C validator