Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0 Structured version   Visualization version   GIF version

Theorem satfv0 35345
Description: The value of the satisfaction predicate as function over wff codes at . (Contributed by AV, 8-Oct-2023.)
Hypothesis
Ref Expression
satfv0.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Distinct variable groups:   𝐸,𝑎,𝑖,𝑗,𝑥,𝑦   𝑀,𝑎,𝑖,𝑗,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑉(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑊(𝑥,𝑦,𝑖,𝑗,𝑎)

Proof of Theorem satfv0
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7865 . . . 4 ∅ ∈ ω
2 elelsuc 6407 . . . 4 (∅ ∈ ω → ∅ ∈ suc ω)
31, 2mp1i 13 . . 3 ((𝑀𝑉𝐸𝑊) → ∅ ∈ suc ω)
4 satfv0.s . . . 4 𝑆 = (𝑀 Sat 𝐸)
54satfvsucom 35344 . . 3 ((𝑀𝑉𝐸𝑊 ∧ ∅ ∈ suc ω) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
63, 5mpd3an3 1464 . 2 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
7 goelel3xp 35335 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
8 eleq1 2816 . . . . . . . . . 10 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
97, 8syl5ibrcom 247 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
109adantrd 491 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑥 ∈ (ω × (ω × ω))))
1110pm4.71d 561 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω)))))
12112rexbiia 3198 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
13 r19.41vv 3207 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
14 ancom 460 . . . . . 6 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1512, 13, 143bitri 297 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1615opabbii 5174 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))}
17 omex 9596 . . . . 5 ω ∈ V
1817, 17xpex 7729 . . . . 5 (ω × ω) ∈ V
19 xpexg 7726 . . . . . 6 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
20 oveq1 7394 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (𝑖𝑔𝑗) = (𝑚𝑔𝑗))
2120eqeq2d 2740 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑗)))
22 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝑎𝑖) = (𝑎𝑚))
2322breq1d 5117 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑗)))
2423rabbidv 3413 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})
2524eqeq2d 2740 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}))
2621, 25anbi12d 632 . . . . . . . . . . . 12 (𝑖 = 𝑚 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})))
27 oveq2 7395 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑚𝑔𝑗) = (𝑚𝑔𝑛))
2827eqeq2d 2740 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑥 = (𝑚𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑛)))
29 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (𝑎𝑗) = (𝑎𝑛))
3029breq2d 5119 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ((𝑎𝑚)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑛)))
3130rabbidv 3413 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})
3231eqeq2d 2740 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
3328, 32anbi12d 632 . . . . . . . . . . . 12 (𝑗 = 𝑛 → ((𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})))
3426, 33cbvrex2vw 3220 . . . . . . . . . . 11 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
35 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
3635adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
37 goeleq12bg 35336 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) ↔ (𝑖 = 𝑚𝑗 = 𝑛)))
3822eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑚 → (𝑎𝑚) = (𝑎𝑖))
3929eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑛 → (𝑎𝑛) = (𝑎𝑗))
4038, 39breqan12d 5123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚𝑗 = 𝑛) → ((𝑎𝑚)𝐸(𝑎𝑛) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
4140rabbidv 3413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 = 𝑚𝑗 = 𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
4237, 41biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4342imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
44 eqeq12 2746 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (𝑦 = 𝑧 ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4543, 44syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
4645exp4b 430 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4836, 47sylbid 240 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4948impd 410 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧)))
5049com23 86 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5150expimpd 453 . . . . . . . . . . . . . 14 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5251rexlimdvva 3194 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5352com23 86 . . . . . . . . . . . 12 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧)))
5453rexlimivv 3179 . . . . . . . . . . 11 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5534, 54sylbi 217 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5655imp 406 . . . . . . . . 9 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
5756gen2 1796 . . . . . . . 8 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
58 eqeq1 2733 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
5958anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
60592rexbidv 3202 . . . . . . . . 9 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
6160mo4 2559 . . . . . . . 8 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧))
6257, 61mpbir 231 . . . . . . 7 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
63 moabex 5419 . . . . . . 7 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6462, 63mp1i 13 . . . . . 6 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ 𝑥 ∈ (ω × (ω × ω))) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6519, 64opabex3d 7944 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V)
6617, 18, 65mp2an 692 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V
6716, 66eqeltri 2824 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V
6867rdg0 8389 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
696, 68eqtrdi 2780 1 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  cres 5640  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  reccrdg 8377  m cmap 8799  𝑔cgoe 35320  𝑔cgna 35321  𝑔cgol 35322   Sat csat 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-goel 35327  df-sat 35330
This theorem is referenced by:  satfv1  35350  satfrel  35354  satfdm  35356  satfrnmapom  35357  satfv0fun  35358  satfv0fvfmla0  35400
  Copyright terms: Public domain W3C validator