Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0 Structured version   Visualization version   GIF version

Theorem satfv0 33220
Description: The value of the satisfaction predicate as function over wff codes at . (Contributed by AV, 8-Oct-2023.)
Hypothesis
Ref Expression
satfv0.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Distinct variable groups:   𝐸,𝑎,𝑖,𝑗,𝑥,𝑦   𝑀,𝑎,𝑖,𝑗,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑉(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑊(𝑥,𝑦,𝑖,𝑗,𝑎)

Proof of Theorem satfv0
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7710 . . . 4 ∅ ∈ ω
2 elelsuc 6323 . . . 4 (∅ ∈ ω → ∅ ∈ suc ω)
31, 2mp1i 13 . . 3 ((𝑀𝑉𝐸𝑊) → ∅ ∈ suc ω)
4 satfv0.s . . . 4 𝑆 = (𝑀 Sat 𝐸)
54satfvsucom 33219 . . 3 ((𝑀𝑉𝐸𝑊 ∧ ∅ ∈ suc ω) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
63, 5mpd3an3 1460 . 2 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
7 goelel3xp 33210 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
8 eleq1 2826 . . . . . . . . . 10 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
97, 8syl5ibrcom 246 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
109adantrd 491 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑥 ∈ (ω × (ω × ω))))
1110pm4.71d 561 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω)))))
12112rexbiia 3226 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
13 r19.41vv 3275 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
14 ancom 460 . . . . . 6 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1512, 13, 143bitri 296 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1615opabbii 5137 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))}
17 omex 9331 . . . . 5 ω ∈ V
1817, 17xpex 7581 . . . . 5 (ω × ω) ∈ V
19 xpexg 7578 . . . . . 6 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
20 oveq1 7262 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (𝑖𝑔𝑗) = (𝑚𝑔𝑗))
2120eqeq2d 2749 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑗)))
22 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝑎𝑖) = (𝑎𝑚))
2322breq1d 5080 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑗)))
2423rabbidv 3404 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})
2524eqeq2d 2749 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}))
2621, 25anbi12d 630 . . . . . . . . . . . 12 (𝑖 = 𝑚 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})))
27 oveq2 7263 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑚𝑔𝑗) = (𝑚𝑔𝑛))
2827eqeq2d 2749 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑥 = (𝑚𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑛)))
29 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (𝑎𝑗) = (𝑎𝑛))
3029breq2d 5082 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ((𝑎𝑚)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑛)))
3130rabbidv 3404 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})
3231eqeq2d 2749 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
3328, 32anbi12d 630 . . . . . . . . . . . 12 (𝑗 = 𝑛 → ((𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})))
3426, 33cbvrex2vw 3386 . . . . . . . . . . 11 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
35 eqeq1 2742 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
3635adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
37 goeleq12bg 33211 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) ↔ (𝑖 = 𝑚𝑗 = 𝑛)))
3822eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑚 → (𝑎𝑚) = (𝑎𝑖))
3929eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑛 → (𝑎𝑛) = (𝑎𝑗))
4038, 39breqan12d 5086 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚𝑗 = 𝑛) → ((𝑎𝑚)𝐸(𝑎𝑛) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
4140rabbidv 3404 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 = 𝑚𝑗 = 𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
4237, 41syl6bi 252 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4342imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
44 eqeq12 2755 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (𝑦 = 𝑧 ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4543, 44syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
4645exp4b 430 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4836, 47sylbid 239 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4948impd 410 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧)))
5049com23 86 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5150expimpd 453 . . . . . . . . . . . . . 14 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5251rexlimdvva 3222 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5352com23 86 . . . . . . . . . . . 12 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧)))
5453rexlimivv 3220 . . . . . . . . . . 11 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5534, 54sylbi 216 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5655imp 406 . . . . . . . . 9 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
5756gen2 1800 . . . . . . . 8 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
58 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
5958anbi2d 628 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
60592rexbidv 3228 . . . . . . . . 9 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
6160mo4 2566 . . . . . . . 8 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧))
6257, 61mpbir 230 . . . . . . 7 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
63 moabex 5368 . . . . . . 7 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6462, 63mp1i 13 . . . . . 6 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ 𝑥 ∈ (ω × (ω × ω))) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6519, 64opabex3d 7781 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V)
6617, 18, 65mp2an 688 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V
6716, 66eqeltri 2835 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V
6867rdg0 8223 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
696, 68eqtrdi 2795 1 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  {cab 2715  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  {copab 5132  cmpt 5153   × cxp 5578  cres 5582  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1st c1st 7802  2nd c2nd 7803  reccrdg 8211  m cmap 8573  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197   Sat csat 33198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-goel 33202  df-sat 33205
This theorem is referenced by:  satfv1  33225  satfrel  33229  satfdm  33231  satfrnmapom  33232  satfv0fun  33233  satfv0fvfmla0  33275
  Copyright terms: Public domain W3C validator