| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | peano1 7911 | . . . 4
⊢ ∅
∈ ω | 
| 2 |  | elelsuc 6456 | . . . 4
⊢ (∅
∈ ω → ∅ ∈ suc ω) | 
| 3 | 1, 2 | mp1i 13 | . . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ∅ ∈ suc
ω) | 
| 4 |  | satfv0.s | . . . 4
⊢ 𝑆 = (𝑀 Sat 𝐸) | 
| 5 | 4 | satfvsucom 35363 | . . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ suc ω) →
(𝑆‘∅) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘∅)) | 
| 6 | 3, 5 | mpd3an3 1463 | . 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘∅)) | 
| 7 |  | goelel3xp 35354 | . . . . . . . . . 10
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) ∈ (ω ×
(ω × ω))) | 
| 8 |  | eleq1 2828 | . . . . . . . . . 10
⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 ∈ (ω × (ω ×
ω)) ↔ (𝑖∈𝑔𝑗) ∈ (ω × (ω ×
ω)))) | 
| 9 | 7, 8 | syl5ibrcom 247 | . . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω ×
ω)))) | 
| 10 | 9 | adantrd 491 | . . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → 𝑥 ∈ (ω × (ω ×
ω)))) | 
| 11 | 10 | pm4.71d 561 | . . . . . . 7
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ 𝑥 ∈ (ω × (ω ×
ω))))) | 
| 12 | 11 | 2rexbiia 3217 | . . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ 𝑥 ∈ (ω × (ω ×
ω)))) | 
| 13 |  | r19.41vv 3226 | . . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ 𝑥 ∈ (ω × (ω ×
ω))) ↔ (∃𝑖
∈ ω ∃𝑗
∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ 𝑥 ∈ (ω × (ω ×
ω)))) | 
| 14 |  | ancom 460 | . . . . . 6
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ 𝑥 ∈ (ω × (ω ×
ω))) ↔ (𝑥 ∈
(ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) | 
| 15 | 12, 13, 14 | 3bitri 297 | . . . . 5
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ (𝑥 ∈ (ω × (ω ×
ω)) ∧ ∃𝑖
∈ ω ∃𝑗
∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) | 
| 16 | 15 | opabbii 5209 | . . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (ω × (ω ×
ω)) ∧ ∃𝑖
∈ ω ∃𝑗
∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))} | 
| 17 |  | omex 9684 | . . . . 5
⊢ ω
∈ V | 
| 18 | 17, 17 | xpex 7774 | . . . . 5
⊢ (ω
× ω) ∈ V | 
| 19 |  | xpexg 7771 | . . . . . 6
⊢ ((ω
∈ V ∧ (ω × ω) ∈ V) → (ω ×
(ω × ω)) ∈ V) | 
| 20 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑗)) | 
| 21 | 20 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝑥 = (𝑖∈𝑔𝑗) ↔ 𝑥 = (𝑚∈𝑔𝑗))) | 
| 22 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑚 → (𝑎‘𝑖) = (𝑎‘𝑚)) | 
| 23 | 22 | breq1d 5152 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑚 → ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ↔ (𝑎‘𝑚)𝐸(𝑎‘𝑗))) | 
| 24 | 23 | rabbidv 3443 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)}) | 
| 25 | 24 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)})) | 
| 26 | 21, 25 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ (𝑥 = (𝑚∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)}))) | 
| 27 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑛 → (𝑚∈𝑔𝑗) = (𝑚∈𝑔𝑛)) | 
| 28 | 27 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑛 → (𝑥 = (𝑚∈𝑔𝑗) ↔ 𝑥 = (𝑚∈𝑔𝑛))) | 
| 29 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑛 → (𝑎‘𝑗) = (𝑎‘𝑛)) | 
| 30 | 29 | breq2d 5154 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑛 → ((𝑎‘𝑚)𝐸(𝑎‘𝑗) ↔ (𝑎‘𝑚)𝐸(𝑎‘𝑛))) | 
| 31 | 30 | rabbidv 3443 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑛 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) | 
| 32 | 31 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)})) | 
| 33 | 28, 32 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑛 → ((𝑥 = (𝑚∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑗)}) ↔ (𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}))) | 
| 34 | 26, 33 | cbvrex2vw 3241 | . . . . . . . . . . 11
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)})) | 
| 35 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑚∈𝑔𝑛) ↔ (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛))) | 
| 36 | 35 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖∈𝑔𝑗)) → (𝑥 = (𝑚∈𝑔𝑛) ↔ (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛))) | 
| 37 |  | goeleq12bg 35355 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛) ↔ (𝑖 = 𝑚 ∧ 𝑗 = 𝑛))) | 
| 38 | 22 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑚 → (𝑎‘𝑚) = (𝑎‘𝑖)) | 
| 39 | 29 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑛 → (𝑎‘𝑛) = (𝑎‘𝑗)) | 
| 40 | 38, 39 | breqan12d 5158 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 = 𝑚 ∧ 𝑗 = 𝑛) → ((𝑎‘𝑚)𝐸(𝑎‘𝑛) ↔ (𝑎‘𝑖)𝐸(𝑎‘𝑗))) | 
| 41 | 40 | rabbidv 3443 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 = 𝑚 ∧ 𝑗 = 𝑛) → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) | 
| 42 | 37, 41 | biimtrdi 253 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛) → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) | 
| 43 | 42 | imp 406 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛)) → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) | 
| 44 |  | eqeq12 2753 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → (𝑦 = 𝑧 ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) | 
| 45 | 43, 44 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛)) → ((𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → 𝑦 = 𝑧)) | 
| 46 | 45 | exp4b 430 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} → (𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → 𝑦 = 𝑧)))) | 
| 47 | 46 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖∈𝑔𝑗)) → ((𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} → (𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → 𝑦 = 𝑧)))) | 
| 48 | 36, 47 | sylbid 240 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖∈𝑔𝑗)) → (𝑥 = (𝑚∈𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)} → (𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → 𝑦 = 𝑧)))) | 
| 49 | 48 | impd 410 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖∈𝑔𝑗)) → ((𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → (𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → 𝑦 = 𝑧))) | 
| 50 | 49 | com23 86 | . . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖∈𝑔𝑗)) → (𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → ((𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → 𝑦 = 𝑧))) | 
| 51 | 50 | expimpd 453 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → 𝑦 = 𝑧))) | 
| 52 | 51 | rexlimdvva 3212 | . . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
(∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → 𝑦 = 𝑧))) | 
| 53 | 52 | com23 86 | . . . . . . . . . . . 12
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ((𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → 𝑦 = 𝑧))) | 
| 54 | 53 | rexlimivv 3200 | . . . . . . . . . . 11
⊢
(∃𝑚 ∈
ω ∃𝑛 ∈
ω (𝑥 = (𝑚∈𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑚)𝐸(𝑎‘𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → 𝑦 = 𝑧)) | 
| 55 | 34, 54 | sylbi 217 | . . . . . . . . . 10
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → 𝑦 = 𝑧)) | 
| 56 | 55 | imp 406 | . . . . . . . . 9
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → 𝑦 = 𝑧) | 
| 57 | 56 | gen2 1795 | . . . . . . . 8
⊢
∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → 𝑦 = 𝑧) | 
| 58 |  | eqeq1 2740 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) | 
| 59 | 58 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) | 
| 60 | 59 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) | 
| 61 | 60 | mo4 2565 | . . . . . . . 8
⊢
(∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → 𝑦 = 𝑧)) | 
| 62 | 57, 61 | mpbir 231 | . . . . . . 7
⊢
∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) | 
| 63 |  | moabex 5463 | . . . . . . 7
⊢
(∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} ∈ V) | 
| 64 | 62, 63 | mp1i 13 | . . . . . 6
⊢
(((ω ∈ V ∧ (ω × ω) ∈ V) ∧
𝑥 ∈ (ω ×
(ω × ω))) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} ∈ V) | 
| 65 | 19, 64 | opabex3d 7991 | . . . . 5
⊢ ((ω
∈ V ∧ (ω × ω) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (ω × (ω ×
ω)) ∧ ∃𝑖
∈ ω ∃𝑗
∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))} ∈ V) | 
| 66 | 17, 18, 65 | mp2an 692 | . . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (ω ×
(ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))} ∈ V | 
| 67 | 16, 66 | eqeltri 2836 | . . 3
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} ∈ V | 
| 68 | 67 | rdg0 8462 | . 2
⊢
(rec((𝑓 ∈ V
↦ (𝑓 ∪
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} | 
| 69 | 6, 68 | eqtrdi 2792 | 1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) |