Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0 Structured version   Visualization version   GIF version

Theorem satfv0 35423
Description: The value of the satisfaction predicate as function over wff codes at . (Contributed by AV, 8-Oct-2023.)
Hypothesis
Ref Expression
satfv0.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Distinct variable groups:   𝐸,𝑎,𝑖,𝑗,𝑥,𝑦   𝑀,𝑎,𝑖,𝑗,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑉(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑊(𝑥,𝑦,𝑖,𝑗,𝑎)

Proof of Theorem satfv0
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7825 . . . 4 ∅ ∈ ω
2 elelsuc 6386 . . . 4 (∅ ∈ ω → ∅ ∈ suc ω)
31, 2mp1i 13 . . 3 ((𝑀𝑉𝐸𝑊) → ∅ ∈ suc ω)
4 satfv0.s . . . 4 𝑆 = (𝑀 Sat 𝐸)
54satfvsucom 35422 . . 3 ((𝑀𝑉𝐸𝑊 ∧ ∅ ∈ suc ω) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
63, 5mpd3an3 1464 . 2 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
7 goelel3xp 35413 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
8 eleq1 2821 . . . . . . . . . 10 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
97, 8syl5ibrcom 247 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
109adantrd 491 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑥 ∈ (ω × (ω × ω))))
1110pm4.71d 561 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω)))))
12112rexbiia 3194 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
13 r19.41vv 3203 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
14 ancom 460 . . . . . 6 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1512, 13, 143bitri 297 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1615opabbii 5160 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))}
17 omex 9540 . . . . 5 ω ∈ V
1817, 17xpex 7692 . . . . 5 (ω × ω) ∈ V
19 xpexg 7689 . . . . . 6 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
20 oveq1 7359 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (𝑖𝑔𝑗) = (𝑚𝑔𝑗))
2120eqeq2d 2744 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑗)))
22 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝑎𝑖) = (𝑎𝑚))
2322breq1d 5103 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑗)))
2423rabbidv 3403 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})
2524eqeq2d 2744 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}))
2621, 25anbi12d 632 . . . . . . . . . . . 12 (𝑖 = 𝑚 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})))
27 oveq2 7360 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑚𝑔𝑗) = (𝑚𝑔𝑛))
2827eqeq2d 2744 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑥 = (𝑚𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑛)))
29 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (𝑎𝑗) = (𝑎𝑛))
3029breq2d 5105 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ((𝑎𝑚)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑛)))
3130rabbidv 3403 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})
3231eqeq2d 2744 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
3328, 32anbi12d 632 . . . . . . . . . . . 12 (𝑗 = 𝑛 → ((𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})))
3426, 33cbvrex2vw 3216 . . . . . . . . . . 11 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
35 eqeq1 2737 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
3635adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
37 goeleq12bg 35414 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) ↔ (𝑖 = 𝑚𝑗 = 𝑛)))
3822eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑚 → (𝑎𝑚) = (𝑎𝑖))
3929eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑛 → (𝑎𝑛) = (𝑎𝑗))
4038, 39breqan12d 5109 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚𝑗 = 𝑛) → ((𝑎𝑚)𝐸(𝑎𝑛) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
4140rabbidv 3403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 = 𝑚𝑗 = 𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
4237, 41biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4342imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
44 eqeq12 2750 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (𝑦 = 𝑧 ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4543, 44syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
4645exp4b 430 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4836, 47sylbid 240 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4948impd 410 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧)))
5049com23 86 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5150expimpd 453 . . . . . . . . . . . . . 14 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5251rexlimdvva 3190 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5352com23 86 . . . . . . . . . . . 12 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧)))
5453rexlimivv 3175 . . . . . . . . . . 11 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5534, 54sylbi 217 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5655imp 406 . . . . . . . . 9 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
5756gen2 1797 . . . . . . . 8 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
58 eqeq1 2737 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
5958anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
60592rexbidv 3198 . . . . . . . . 9 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
6160mo4 2563 . . . . . . . 8 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧))
6257, 61mpbir 231 . . . . . . 7 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
63 moabex 5401 . . . . . . 7 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6462, 63mp1i 13 . . . . . 6 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ 𝑥 ∈ (ω × (ω × ω))) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6519, 64opabex3d 7903 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V)
6617, 18, 65mp2an 692 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V
6716, 66eqeltri 2829 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V
6867rdg0 8346 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
696, 68eqtrdi 2784 1 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2113  ∃*wmo 2535  {cab 2711  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4575  cop 4581   class class class wbr 5093  {copab 5155  cmpt 5174   × cxp 5617  cres 5621  suc csuc 6313  cfv 6486  (class class class)co 7352  ωcom 7802  1st c1st 7925  2nd c2nd 7926  reccrdg 8334  m cmap 8756  𝑔cgoe 35398  𝑔cgna 35399  𝑔cgol 35400   Sat csat 35401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-goel 35405  df-sat 35408
This theorem is referenced by:  satfv1  35428  satfrel  35432  satfdm  35434  satfrnmapom  35435  satfv0fun  35436  satfv0fvfmla0  35478
  Copyright terms: Public domain W3C validator