![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrnab | Structured version Visualization version GIF version |
Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
icoreelrnab.1 | β’ πΌ = ([,) β (β Γ β)) |
Ref | Expression |
---|---|
icoreelrnab | β’ (π β πΌ β βπ β β βπ β β π = {π§ β β β£ (π β€ π§ β§ π§ < π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreelrnab.1 | . . . . . 6 β’ πΌ = ([,) β (β Γ β)) | |
2 | df-ima 5688 | . . . . . 6 β’ ([,) β (β Γ β)) = ran ([,) βΎ (β Γ β)) | |
3 | 1, 2 | eqtri 2758 | . . . . 5 β’ πΌ = ran ([,) βΎ (β Γ β)) |
4 | 3 | eleq2i 2823 | . . . 4 β’ (π β πΌ β π β ran ([,) βΎ (β Γ β))) |
5 | icoreresf 36536 | . . . . 5 β’ ([,) βΎ (β Γ β)):(β Γ β)βΆπ« β | |
6 | ffn 6716 | . . . . 5 β’ (([,) βΎ (β Γ β)):(β Γ β)βΆπ« β β ([,) βΎ (β Γ β)) Fn (β Γ β)) | |
7 | ovelrn 7585 | . . . . 5 β’ (([,) βΎ (β Γ β)) Fn (β Γ β) β (π β ran ([,) βΎ (β Γ β)) β βπ β β βπ β β π = (π([,) βΎ (β Γ β))π))) | |
8 | 5, 6, 7 | mp2b 10 | . . . 4 β’ (π β ran ([,) βΎ (β Γ β)) β βπ β β βπ β β π = (π([,) βΎ (β Γ β))π)) |
9 | 4, 8 | bitri 274 | . . 3 β’ (π β πΌ β βπ β β βπ β β π = (π([,) βΎ (β Γ β))π)) |
10 | ovres 7575 | . . . . 5 β’ ((π β β β§ π β β) β (π([,) βΎ (β Γ β))π) = (π[,)π)) | |
11 | 10 | eqeq2d 2741 | . . . 4 β’ ((π β β β§ π β β) β (π = (π([,) βΎ (β Γ β))π) β π = (π[,)π))) |
12 | 11 | 2rexbiia 3213 | . . 3 β’ (βπ β β βπ β β π = (π([,) βΎ (β Γ β))π) β βπ β β βπ β β π = (π[,)π)) |
13 | 9, 12 | bitri 274 | . 2 β’ (π β πΌ β βπ β β βπ β β π = (π[,)π)) |
14 | icoreval 36537 | . . . 4 β’ ((π β β β§ π β β) β (π[,)π) = {π§ β β β£ (π β€ π§ β§ π§ < π)}) | |
15 | 14 | eqeq2d 2741 | . . 3 β’ ((π β β β§ π β β) β (π = (π[,)π) β π = {π§ β β β£ (π β€ π§ β§ π§ < π)})) |
16 | 15 | 2rexbiia 3213 | . 2 β’ (βπ β β βπ β β π = (π[,)π) β βπ β β βπ β β π = {π§ β β β£ (π β€ π§ β§ π§ < π)}) |
17 | 13, 16 | bitri 274 | 1 β’ (π β πΌ β βπ β β βπ β β π = {π§ β β β£ (π β€ π§ β§ π§ < π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwrex 3068 {crab 3430 π« cpw 4601 class class class wbr 5147 Γ cxp 5673 ran crn 5676 βΎ cres 5677 β cima 5678 Fn wfn 6537 βΆwf 6538 (class class class)co 7411 βcr 11111 < clt 11252 β€ cle 11253 [,)cico 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13334 |
This theorem is referenced by: isbasisrelowllem1 36539 isbasisrelowllem2 36540 icoreclin 36541 |
Copyright terms: Public domain | W3C validator |