Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreelrnab Structured version   Visualization version   GIF version

Theorem icoreelrnab 33692
Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreelrnab.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreelrnab (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
Distinct variable groups:   𝑋,𝑎,𝑏   𝑧,𝑎,𝑏
Allowed substitution hints:   𝐼(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem icoreelrnab
StepHypRef Expression
1 icoreelrnab.1 . . . . . 6 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ima 5323 . . . . . 6 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
31, 2eqtri 2819 . . . . 5 𝐼 = ran ([,) ↾ (ℝ × ℝ))
43eleq2i 2868 . . . 4 (𝑋𝐼𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)))
5 icoreresf 33690 . . . . 5 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
6 ffn 6254 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
7 ovelrn 7042 . . . . 5 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)))
85, 6, 7mp2b 10 . . . 4 (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
94, 8bitri 267 . . 3 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
10 ovres 7032 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏))
1110eqeq2d 2807 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏)))
12112rexbiia 3234 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
139, 12bitri 267 . 2 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
14 icoreval 33691 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1514eqeq2d 2807 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
16152rexbiia 3234 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1713, 16bitri 267 1 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3088  {crab 3091  𝒫 cpw 4347   class class class wbr 4841   × cxp 5308  ran crn 5311  cres 5312  cima 5313   Fn wfn 6094  wf 6095  (class class class)co 6876  cr 10221   < clt 10361  cle 10362  [,)cico 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-pre-lttri 10296  ax-pre-lttrn 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-1st 7399  df-2nd 7400  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-ico 12426
This theorem is referenced by:  isbasisrelowllem1  33693  isbasisrelowllem2  33694  icoreclin  33695
  Copyright terms: Public domain W3C validator