| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrnab | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) |
| Ref | Expression |
|---|---|
| icoreelrnab.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| icoreelrnab | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoreelrnab.1 | . . . . . 6 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
| 2 | df-ima 5698 | . . . . . 6 ⊢ ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ)) | |
| 3 | 1, 2 | eqtri 2765 | . . . . 5 ⊢ 𝐼 = ran ([,) ↾ (ℝ × ℝ)) |
| 4 | 3 | eleq2i 2833 | . . . 4 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ran ([,) ↾ (ℝ × ℝ))) |
| 5 | icoreresf 37353 | . . . . 5 ⊢ ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ | |
| 6 | ffn 6736 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 7 | ovelrn 7609 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 9 | 4, 8 | bitri 275 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 10 | ovres 7599 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏)) | |
| 11 | 10 | eqeq2d 2748 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏))) |
| 12 | 11 | 2rexbiia 3218 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 13 | 9, 12 | bitri 275 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 14 | icoreval 37354 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
| 15 | 14 | eqeq2d 2748 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) |
| 16 | 15 | 2rexbiia 3218 | . 2 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| 17 | 13, 16 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 𝒫 cpw 4600 class class class wbr 5143 × cxp 5683 ran crn 5686 ↾ cres 5687 “ cima 5688 Fn wfn 6556 ⟶wf 6557 (class class class)co 7431 ℝcr 11154 < clt 11295 ≤ cle 11296 [,)cico 13389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-ico 13393 |
| This theorem is referenced by: isbasisrelowllem1 37356 isbasisrelowllem2 37357 icoreclin 37358 |
| Copyright terms: Public domain | W3C validator |