Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrnab | Structured version Visualization version GIF version |
Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
icoreelrnab.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
icoreelrnab | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoreelrnab.1 | . . . . . 6 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
2 | df-ima 5538 | . . . . . 6 ⊢ ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ)) | |
3 | 1, 2 | eqtri 2782 | . . . . 5 ⊢ 𝐼 = ran ([,) ↾ (ℝ × ℝ)) |
4 | 3 | eleq2i 2844 | . . . 4 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ran ([,) ↾ (ℝ × ℝ))) |
5 | icoreresf 35042 | . . . . 5 ⊢ ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ | |
6 | ffn 6499 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
7 | ovelrn 7321 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))) | |
8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
9 | 4, 8 | bitri 278 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
10 | ovres 7311 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏)) | |
11 | 10 | eqeq2d 2770 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏))) |
12 | 11 | 2rexbiia 3223 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
13 | 9, 12 | bitri 278 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
14 | icoreval 35043 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
15 | 14 | eqeq2d 2770 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) |
16 | 15 | 2rexbiia 3223 | . 2 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
17 | 13, 16 | bitri 278 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 {crab 3075 𝒫 cpw 4495 class class class wbr 5033 × cxp 5523 ran crn 5526 ↾ cres 5527 “ cima 5528 Fn wfn 6331 ⟶wf 6332 (class class class)co 7151 ℝcr 10567 < clt 10706 ≤ cle 10707 [,)cico 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-pre-lttri 10642 ax-pre-lttrn 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-ico 12778 |
This theorem is referenced by: isbasisrelowllem1 35045 isbasisrelowllem2 35046 icoreclin 35047 |
Copyright terms: Public domain | W3C validator |