Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreelrnab Structured version   Visualization version   GIF version

Theorem icoreelrnab 34506
Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreelrnab.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreelrnab (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
Distinct variable groups:   𝑋,𝑎,𝑏   𝑧,𝑎,𝑏
Allowed substitution hints:   𝐼(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem icoreelrnab
StepHypRef Expression
1 icoreelrnab.1 . . . . . 6 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ima 5566 . . . . . 6 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
31, 2eqtri 2848 . . . . 5 𝐼 = ran ([,) ↾ (ℝ × ℝ))
43eleq2i 2908 . . . 4 (𝑋𝐼𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)))
5 icoreresf 34504 . . . . 5 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
6 ffn 6510 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
7 ovelrn 7317 . . . . 5 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)))
85, 6, 7mp2b 10 . . . 4 (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
94, 8bitri 276 . . 3 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
10 ovres 7307 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏))
1110eqeq2d 2836 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏)))
12112rexbiia 3302 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
139, 12bitri 276 . 2 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
14 icoreval 34505 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1514eqeq2d 2836 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
16152rexbiia 3302 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1713, 16bitri 276 1 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143  {crab 3146  𝒫 cpw 4541   class class class wbr 5062   × cxp 5551  ran crn 5554  cres 5555  cima 5556   Fn wfn 6346  wf 6347  (class class class)co 7151  cr 10528   < clt 10667  cle 10668  [,)cico 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ico 12737
This theorem is referenced by:  isbasisrelowllem1  34507  isbasisrelowllem2  34508  icoreclin  34509
  Copyright terms: Public domain W3C validator