| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrnab | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) |
| Ref | Expression |
|---|---|
| icoreelrnab.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| icoreelrnab | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoreelrnab.1 | . . . . . 6 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
| 2 | df-ima 5632 | . . . . . 6 ⊢ ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ)) | |
| 3 | 1, 2 | eqtri 2756 | . . . . 5 ⊢ 𝐼 = ran ([,) ↾ (ℝ × ℝ)) |
| 4 | 3 | eleq2i 2825 | . . . 4 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ran ([,) ↾ (ℝ × ℝ))) |
| 5 | icoreresf 37417 | . . . . 5 ⊢ ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ | |
| 6 | ffn 6656 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 7 | ovelrn 7528 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 9 | 4, 8 | bitri 275 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 10 | ovres 7518 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏)) | |
| 11 | 10 | eqeq2d 2744 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏))) |
| 12 | 11 | 2rexbiia 3194 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 13 | 9, 12 | bitri 275 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 14 | icoreval 37418 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
| 15 | 14 | eqeq2d 2744 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) |
| 16 | 15 | 2rexbiia 3194 | . 2 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| 17 | 13, 16 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 𝒫 cpw 4549 class class class wbr 5093 × cxp 5617 ran crn 5620 ↾ cres 5621 “ cima 5622 Fn wfn 6481 ⟶wf 6482 (class class class)co 7352 ℝcr 11012 < clt 11153 ≤ cle 11154 [,)cico 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ico 13253 |
| This theorem is referenced by: isbasisrelowllem1 37420 isbasisrelowllem2 37421 icoreclin 37422 |
| Copyright terms: Public domain | W3C validator |