| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreelrnab | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) |
| Ref | Expression |
|---|---|
| icoreelrnab.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| icoreelrnab | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoreelrnab.1 | . . . . . 6 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
| 2 | df-ima 5672 | . . . . . 6 ⊢ ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ)) | |
| 3 | 1, 2 | eqtri 2759 | . . . . 5 ⊢ 𝐼 = ran ([,) ↾ (ℝ × ℝ)) |
| 4 | 3 | eleq2i 2827 | . . . 4 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ran ([,) ↾ (ℝ × ℝ))) |
| 5 | icoreresf 37375 | . . . . 5 ⊢ ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ | |
| 6 | ffn 6711 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 7 | ovelrn 7588 | . . . . 5 ⊢ (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 9 | 4, 8 | bitri 275 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)) |
| 10 | ovres 7578 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏)) | |
| 11 | 10 | eqeq2d 2747 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏))) |
| 12 | 11 | 2rexbiia 3206 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 13 | 9, 12 | bitri 275 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏)) |
| 14 | icoreval 37376 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | |
| 15 | 14 | eqeq2d 2747 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) |
| 16 | 15 | 2rexbiia 3206 | . 2 ⊢ (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| 17 | 13, 16 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 𝒫 cpw 4580 class class class wbr 5124 × cxp 5657 ran crn 5660 ↾ cres 5661 “ cima 5662 Fn wfn 6531 ⟶wf 6532 (class class class)co 7410 ℝcr 11133 < clt 11274 ≤ cle 11275 [,)cico 13369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ico 13373 |
| This theorem is referenced by: isbasisrelowllem1 37378 isbasisrelowllem2 37379 icoreclin 37380 |
| Copyright terms: Public domain | W3C validator |