MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpfo Structured version   Visualization version   GIF version

Theorem mndpfo 18717
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b 𝐵 = (Base‘𝐺)
mndpf.p = (+𝑓𝐺)
Assertion
Ref Expression
mndpfo (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem mndpfo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3 𝐵 = (Base‘𝐺)
2 mndpf.p . . 3 = (+𝑓𝐺)
31, 2mndplusf 18712 . 2 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
4 simpr 484 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥𝐵)
5 eqid 2728 . . . . . . 7 (0g𝐺) = (0g𝐺)
61, 5mndidcl 18709 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
76adantr 480 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (0g𝐺) ∈ 𝐵)
8 eqid 2728 . . . . . . 7 (+g𝐺) = (+g𝐺)
91, 8, 5mndrid 18715 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
109eqcomd 2734 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥 = (𝑥(+g𝐺)(0g𝐺)))
11 rspceov 7467 . . . . 5 ((𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵𝑥 = (𝑥(+g𝐺)(0g𝐺))) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
124, 7, 10, 11syl3anc 1369 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
131, 8, 2plusfval 18607 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧) = (𝑦(+g𝐺)𝑧))
1413eqeq2d 2739 . . . . 5 ((𝑦𝐵𝑧𝐵) → (𝑥 = (𝑦 𝑧) ↔ 𝑥 = (𝑦(+g𝐺)𝑧)))
15142rexbiia 3212 . . . 4 (∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
1612, 15sylibr 233 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
1716ralrimiva 3143 . 2 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
18 foov 7595 . 2 ( :(𝐵 × 𝐵)–onto𝐵 ↔ ( :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧)))
193, 17, 18sylanbrc 582 1 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  wrex 3067   × cxp 5676  wf 6544  ontowfo 6546  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  0gc0g 17421  +𝑓cplusf 18597  Mndcmnd 18694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fo 6554  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-0g 17423  df-plusf 18599  df-mgm 18600  df-sgrp 18679  df-mnd 18695
This theorem is referenced by:  mndfo  18718  grpplusfo  18906
  Copyright terms: Public domain W3C validator