| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndpfo | Structured version Visualization version GIF version | ||
| Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mndpf.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndpf.p | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| mndpfo | ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndpf.p | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 3 | 1, 2 | mndplusf 18730 | . 2 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 5 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 5 | mndidcl 18727 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (0g‘𝐺) ∈ 𝐵) |
| 8 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 9 | 1, 8, 5 | mndrid 18733 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
| 10 | 9 | eqcomd 2741 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) |
| 11 | rspceov 7454 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) | |
| 12 | 4, 7, 10, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
| 13 | 1, 8, 2 | plusfval 18625 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ⨣ 𝑧) = (𝑦(+g‘𝐺)𝑧)) |
| 14 | 13 | eqeq2d 2746 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 = (𝑦 ⨣ 𝑧) ↔ 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 15 | 14 | 2rexbiia 3202 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
| 16 | 12, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
| 17 | 16 | ralrimiva 3132 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
| 18 | foov 7581 | . 2 ⊢ ( ⨣ :(𝐵 × 𝐵)–onto→𝐵 ↔ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧))) | |
| 19 | 3, 17, 18 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 × cxp 5652 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 +𝑓cplusf 18615 Mndcmnd 18712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-0g 17455 df-plusf 18617 df-mgm 18618 df-sgrp 18697 df-mnd 18713 |
| This theorem is referenced by: mndfo 18736 grpplusfo 18932 |
| Copyright terms: Public domain | W3C validator |