![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndpfo | Structured version Visualization version GIF version |
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mndpf.b | ⊢ 𝐵 = (Base‘𝐺) |
mndpf.p | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
mndpfo | ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndpf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndpf.p | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
3 | 1, 2 | mndplusf 18790 | . 2 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
4 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
5 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | mndidcl 18787 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (0g‘𝐺) ∈ 𝐵) |
8 | eqid 2740 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | 1, 8, 5 | mndrid 18793 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
10 | 9 | eqcomd 2746 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) |
11 | rspceov 7497 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) | |
12 | 4, 7, 10, 11 | syl3anc 1371 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
13 | 1, 8, 2 | plusfval 18685 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ⨣ 𝑧) = (𝑦(+g‘𝐺)𝑧)) |
14 | 13 | eqeq2d 2751 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 = (𝑦 ⨣ 𝑧) ↔ 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 14 | 2rexbiia 3224 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
16 | 12, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
17 | 16 | ralrimiva 3152 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
18 | foov 7624 | . 2 ⊢ ( ⨣ :(𝐵 × 𝐵)–onto→𝐵 ↔ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧))) | |
19 | 3, 17, 18 | sylanbrc 582 | 1 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 × cxp 5698 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 +𝑓cplusf 18675 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-0g 17501 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mndfo 18796 grpplusfo 18989 |
Copyright terms: Public domain | W3C validator |