MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpfo Structured version   Visualization version   GIF version

Theorem mndpfo 18684
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b 𝐵 = (Base‘𝐺)
mndpf.p = (+𝑓𝐺)
Assertion
Ref Expression
mndpfo (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem mndpfo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3 𝐵 = (Base‘𝐺)
2 mndpf.p . . 3 = (+𝑓𝐺)
31, 2mndplusf 18679 . 2 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
4 simpr 484 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥𝐵)
5 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
61, 5mndidcl 18676 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
76adantr 480 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (0g𝐺) ∈ 𝐵)
8 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
91, 8, 5mndrid 18682 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
109eqcomd 2735 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥 = (𝑥(+g𝐺)(0g𝐺)))
11 rspceov 7436 . . . . 5 ((𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵𝑥 = (𝑥(+g𝐺)(0g𝐺))) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
124, 7, 10, 11syl3anc 1373 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
131, 8, 2plusfval 18574 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧) = (𝑦(+g𝐺)𝑧))
1413eqeq2d 2740 . . . . 5 ((𝑦𝐵𝑧𝐵) → (𝑥 = (𝑦 𝑧) ↔ 𝑥 = (𝑦(+g𝐺)𝑧)))
15142rexbiia 3198 . . . 4 (∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
1612, 15sylibr 234 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
1716ralrimiva 3125 . 2 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
18 foov 7563 . 2 ( :(𝐵 × 𝐵)–onto𝐵 ↔ ( :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧)))
193, 17, 18sylanbrc 583 1 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   × cxp 5636  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  +𝑓cplusf 18564  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  mndfo  18685  grpplusfo  18881
  Copyright terms: Public domain W3C validator