| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndpfo | Structured version Visualization version GIF version | ||
| Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mndpf.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndpf.p | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| mndpfo | ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndpf.p | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 3 | 1, 2 | mndplusf 18679 | . 2 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 5 | mndidcl 18676 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (0g‘𝐺) ∈ 𝐵) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 9 | 1, 8, 5 | mndrid 18682 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
| 10 | 9 | eqcomd 2735 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) |
| 11 | rspceov 7436 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ 𝑥 = (𝑥(+g‘𝐺)(0g‘𝐺))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) | |
| 12 | 4, 7, 10, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
| 13 | 1, 8, 2 | plusfval 18574 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ⨣ 𝑧) = (𝑦(+g‘𝐺)𝑧)) |
| 14 | 13 | eqeq2d 2740 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 = (𝑦 ⨣ 𝑧) ↔ 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 15 | 14 | 2rexbiia 3198 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦(+g‘𝐺)𝑧)) |
| 16 | 12, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
| 17 | 16 | ralrimiva 3125 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧)) |
| 18 | foov 7563 | . 2 ⊢ ( ⨣ :(𝐵 × 𝐵)–onto→𝐵 ↔ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ⨣ 𝑧))) | |
| 19 | 3, 17, 18 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 × cxp 5636 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 +𝑓cplusf 18564 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: mndfo 18685 grpplusfo 18881 |
| Copyright terms: Public domain | W3C validator |