| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3154 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3154 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: disjxun 5105 reu3op 6265 opreu2reurex 6267 isocnv3 7307 isotr 7311 f1oweALT 7951 fnmpoovd 8066 pospropd 18286 tosso 18378 isipodrs 18496 mgmpropd 18578 mgmhmpropd 18625 sgrppropd 18658 mndpropd 18686 mhmpropd 18719 efgred 19678 cmnpropd 19721 rngpropd 20083 ringpropd 20197 isdomn3 20624 lmodprop2d 20830 lsspropd 20924 islmhm2 20945 lmhmpropd 20980 islindf4 21747 assapropd 21781 scmatmats 22398 cpmatel2 22600 1elcpmat 22602 m2cpminvid2 22642 decpmataa0 22655 pmatcollpw2lem 22664 connsub 23308 hausdiag 23532 ist0-4 23616 ismet2 24221 txmetcnp 24435 txmetcn 24436 metuel2 24453 metucn 24459 isngp3 24486 nlmvscn 24575 isclmp 24997 isncvsngp 25049 ipcn 25146 iscfil2 25166 caucfil 25183 cfilresi 25195 ulmdvlem3 26311 cxpcn3 26658 tgjustf 28400 tgjustr 28401 tgcgr4 28458 perpcom 28640 brbtwn2 28832 colinearalglem2 28834 eengtrkg 28913 isarchi2 33139 opprlidlabs 33456 elmrsubrn 35507 isbnd3b 37779 iscvlat2N 39317 ishlat3N 39347 gicabl 43088 lindslinindsimp2 48452 joindm3 48957 meetdm3 48959 fucofulem2 49300 thincpropd 49431 functhinclem1 49433 fulltermc 49500 postc 49558 islmd 49654 iscmd 49655 |
| Copyright terms: Public domain | W3C validator |