![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3173 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3173 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: disjxun 5145 reu3op 6313 opreu2reurex 6315 isocnv3 7351 isotr 7355 f1oweALT 7995 fnmpoovd 8110 pospropd 18384 tosso 18476 isipodrs 18594 mgmpropd 18676 mgmhmpropd 18723 sgrppropd 18756 mndpropd 18784 mhmpropd 18817 efgred 19780 cmnpropd 19823 rngpropd 20191 ringpropd 20301 isdomn3 20731 lmodprop2d 20938 lsspropd 21033 islmhm2 21054 lmhmpropd 21089 islindf4 21875 assapropd 21909 scmatmats 22532 cpmatel2 22734 1elcpmat 22736 m2cpminvid2 22776 decpmataa0 22789 pmatcollpw2lem 22798 connsub 23444 hausdiag 23668 ist0-4 23752 ismet2 24358 txmetcnp 24575 txmetcn 24576 metuel2 24593 metucn 24599 isngp3 24626 nlmvscn 24723 isclmp 25143 isncvsngp 25196 ipcn 25293 iscfil2 25313 caucfil 25330 cfilresi 25342 ulmdvlem3 26459 cxpcn3 26805 tgjustf 28495 tgjustr 28496 tgcgr4 28553 perpcom 28735 brbtwn2 28934 colinearalglem2 28936 eengtrkg 29015 isarchi2 33174 opprlidlabs 33492 elmrsubrn 35504 isbnd3b 37771 iscvlat2N 39305 ishlat3N 39335 gicabl 43087 lindslinindsimp2 48308 joindm3 48765 meetdm3 48767 functhinclem1 48840 postc 48884 |
Copyright terms: Public domain | W3C validator |