![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3182 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3182 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: disjxun 5164 reu3op 6323 opreu2reurex 6325 isocnv3 7368 isotr 7372 f1oweALT 8013 fnmpoovd 8128 pospropd 18397 tosso 18489 isipodrs 18607 mgmpropd 18689 mgmhmpropd 18736 sgrppropd 18769 mndpropd 18797 mhmpropd 18827 efgred 19790 cmnpropd 19833 rngpropd 20201 ringpropd 20311 isdomn3 20737 lmodprop2d 20944 lsspropd 21039 islmhm2 21060 lmhmpropd 21095 islindf4 21881 assapropd 21915 scmatmats 22538 cpmatel2 22740 1elcpmat 22742 m2cpminvid2 22782 decpmataa0 22795 pmatcollpw2lem 22804 connsub 23450 hausdiag 23674 ist0-4 23758 ismet2 24364 txmetcnp 24581 txmetcn 24582 metuel2 24599 metucn 24605 isngp3 24632 nlmvscn 24729 isclmp 25149 isncvsngp 25202 ipcn 25299 iscfil2 25319 caucfil 25336 cfilresi 25348 ulmdvlem3 26463 cxpcn3 26809 tgjustf 28499 tgjustr 28500 tgcgr4 28557 perpcom 28739 brbtwn2 28938 colinearalglem2 28940 eengtrkg 29019 isarchi2 33165 opprlidlabs 33478 elmrsubrn 35488 isbnd3b 37745 iscvlat2N 39280 ishlat3N 39310 gicabl 43056 lindslinindsimp2 48192 joindm3 48649 meetdm3 48651 functhinclem1 48708 postc 48749 |
Copyright terms: Public domain | W3C validator |