MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbidva Structured version   Visualization version   GIF version

Theorem 2ralbidva 3203
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2ralbidva (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32ralbidva 3161 . 2 ((𝜑𝑥𝐴) → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
43ralbidva 3161 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3052
This theorem is referenced by:  disjxun  5117  reu3op  6281  opreu2reurex  6283  isocnv3  7324  isotr  7328  f1oweALT  7969  fnmpoovd  8084  pospropd  18335  tosso  18427  isipodrs  18545  mgmpropd  18627  mgmhmpropd  18674  sgrppropd  18707  mndpropd  18735  mhmpropd  18768  efgred  19727  cmnpropd  19770  rngpropd  20132  ringpropd  20246  isdomn3  20673  lmodprop2d  20879  lsspropd  20973  islmhm2  20994  lmhmpropd  21029  islindf4  21796  assapropd  21830  scmatmats  22447  cpmatel2  22649  1elcpmat  22651  m2cpminvid2  22691  decpmataa0  22704  pmatcollpw2lem  22713  connsub  23357  hausdiag  23581  ist0-4  23665  ismet2  24270  txmetcnp  24484  txmetcn  24485  metuel2  24502  metucn  24508  isngp3  24535  nlmvscn  24624  isclmp  25046  isncvsngp  25099  ipcn  25196  iscfil2  25216  caucfil  25233  cfilresi  25245  ulmdvlem3  26361  cxpcn3  26708  tgjustf  28398  tgjustr  28399  tgcgr4  28456  perpcom  28638  brbtwn2  28830  colinearalglem2  28832  eengtrkg  28911  isarchi2  33129  opprlidlabs  33446  elmrsubrn  35488  isbnd3b  37755  iscvlat2N  39288  ishlat3N  39318  gicabl  43070  lindslinindsimp2  48387  joindm3  48891  meetdm3  48893  fucofulem2  49170  thincpropd  49276  functhinclem1  49278  fulltermc  49344  postc  49394  islmd  49483  iscmd  49484
  Copyright terms: Public domain W3C validator