| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3155 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3155 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: disjxun 5108 reu3op 6268 opreu2reurex 6270 isocnv3 7310 isotr 7314 f1oweALT 7954 fnmpoovd 8069 pospropd 18293 tosso 18385 isipodrs 18503 mgmpropd 18585 mgmhmpropd 18632 sgrppropd 18665 mndpropd 18693 mhmpropd 18726 efgred 19685 cmnpropd 19728 rngpropd 20090 ringpropd 20204 isdomn3 20631 lmodprop2d 20837 lsspropd 20931 islmhm2 20952 lmhmpropd 20987 islindf4 21754 assapropd 21788 scmatmats 22405 cpmatel2 22607 1elcpmat 22609 m2cpminvid2 22649 decpmataa0 22662 pmatcollpw2lem 22671 connsub 23315 hausdiag 23539 ist0-4 23623 ismet2 24228 txmetcnp 24442 txmetcn 24443 metuel2 24460 metucn 24466 isngp3 24493 nlmvscn 24582 isclmp 25004 isncvsngp 25056 ipcn 25153 iscfil2 25173 caucfil 25190 cfilresi 25202 ulmdvlem3 26318 cxpcn3 26665 tgjustf 28407 tgjustr 28408 tgcgr4 28465 perpcom 28647 brbtwn2 28839 colinearalglem2 28841 eengtrkg 28920 isarchi2 33146 opprlidlabs 33463 elmrsubrn 35514 isbnd3b 37786 iscvlat2N 39324 ishlat3N 39354 gicabl 43095 lindslinindsimp2 48456 joindm3 48961 meetdm3 48963 fucofulem2 49304 thincpropd 49435 functhinclem1 49437 fulltermc 49504 postc 49562 islmd 49658 iscmd 49659 |
| Copyright terms: Public domain | W3C validator |