Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3168 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3168 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: disjxun 5090 reu3op 6230 opreu2reurex 6232 isocnv3 7259 isotr 7263 f1oweALT 7883 fnmpoovd 7995 pospropd 18142 tosso 18234 isipodrs 18352 mndpropd 18507 mhmpropd 18533 efgred 19449 cmnpropd 19491 ringpropd 19916 lmodprop2d 20291 lsspropd 20385 islmhm2 20406 lmhmpropd 20441 islindf4 21151 assapropd 21182 scmatmats 21766 cpmatel2 21968 1elcpmat 21970 m2cpminvid2 22010 decpmataa0 22023 pmatcollpw2lem 22032 connsub 22678 hausdiag 22902 ist0-4 22986 ismet2 23592 txmetcnp 23809 txmetcn 23810 metuel2 23827 metucn 23833 isngp3 23860 nlmvscn 23957 isclmp 24366 isncvsngp 24419 ipcn 24516 iscfil2 24536 caucfil 24553 cfilresi 24565 ulmdvlem3 25667 cxpcn3 26007 tgjustf 27123 tgjustr 27124 tgcgr4 27181 perpcom 27363 brbtwn2 27562 colinearalglem2 27564 eengtrkg 27643 isarchi2 31726 elmrsubrn 33781 isbnd3b 36056 iscvlat2N 37599 ishlat3N 37629 gicabl 41195 isdomn3 41300 mgmpropd 45688 mgmhmpropd 45698 lidlmmgm 45842 lindslinindsimp2 46163 joindm3 46622 meetdm3 46624 functhinclem1 46681 postc 46722 |
Copyright terms: Public domain | W3C validator |