| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3154 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3154 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: disjxun 5100 reu3op 6253 opreu2reurex 6255 isocnv3 7289 isotr 7293 f1oweALT 7930 fnmpoovd 8043 pospropd 18266 tosso 18358 isipodrs 18478 mgmpropd 18560 mgmhmpropd 18607 sgrppropd 18640 mndpropd 18668 mhmpropd 18701 efgred 19662 cmnpropd 19705 rngpropd 20094 ringpropd 20208 isdomn3 20635 lmodprop2d 20862 lsspropd 20956 islmhm2 20977 lmhmpropd 21012 islindf4 21780 assapropd 21814 scmatmats 22431 cpmatel2 22633 1elcpmat 22635 m2cpminvid2 22675 decpmataa0 22688 pmatcollpw2lem 22697 connsub 23341 hausdiag 23565 ist0-4 23649 ismet2 24254 txmetcnp 24468 txmetcn 24469 metuel2 24486 metucn 24492 isngp3 24519 nlmvscn 24608 isclmp 25030 isncvsngp 25082 ipcn 25179 iscfil2 25199 caucfil 25216 cfilresi 25228 ulmdvlem3 26344 cxpcn3 26691 tgjustf 28453 tgjustr 28454 tgcgr4 28511 perpcom 28693 brbtwn2 28885 colinearalglem2 28887 eengtrkg 28966 isarchi2 33154 opprlidlabs 33449 elmrsubrn 35500 isbnd3b 37772 iscvlat2N 39310 ishlat3N 39340 gicabl 43081 lindslinindsimp2 48445 joindm3 48950 meetdm3 48952 fucofulem2 49293 thincpropd 49424 functhinclem1 49426 fulltermc 49493 postc 49551 islmd 49647 iscmd 49648 |
| Copyright terms: Public domain | W3C validator |