MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbidva Structured version   Visualization version   GIF version

Theorem 2ralbidva 3121
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2ralbidva (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32ralbidva 3119 . 2 ((𝜑𝑥𝐴) → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
43ralbidva 3119 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3068
This theorem is referenced by:  disjxun  5068  reu3op  6184  opreu2reurex  6186  isocnv3  7183  isotr  7187  f1oweALT  7788  fnmpoovd  7898  pospropd  17960  tosso  18052  isipodrs  18170  mndpropd  18325  mhmpropd  18351  efgred  19269  cmnpropd  19311  ringpropd  19736  lmodprop2d  20100  lsspropd  20194  islmhm2  20215  lmhmpropd  20250  islindf4  20955  assapropd  20986  scmatmats  21568  cpmatel2  21770  1elcpmat  21772  m2cpminvid2  21812  decpmataa0  21825  pmatcollpw2lem  21834  connsub  22480  hausdiag  22704  ist0-4  22788  ismet2  23394  txmetcnp  23609  txmetcn  23610  metuel2  23627  metucn  23633  isngp3  23660  nlmvscn  23757  isclmp  24166  isncvsngp  24218  ipcn  24315  iscfil2  24335  caucfil  24352  cfilresi  24364  ulmdvlem3  25466  cxpcn3  25806  tgjustf  26738  tgjustr  26739  tgcgr4  26796  perpcom  26978  brbtwn2  27176  colinearalglem2  27178  eengtrkg  27257  isarchi2  31341  elmrsubrn  33382  isbnd3b  35870  iscvlat2N  37265  ishlat3N  37295  gicabl  40840  isdomn3  40945  mgmpropd  45217  mgmhmpropd  45227  lidlmmgm  45371  lindslinindsimp2  45692  joindm3  46151  meetdm3  46153  functhinclem1  46210  postc  46249
  Copyright terms: Public domain W3C validator