![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3175 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3175 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: disjxun 5146 reu3op 6291 opreu2reurex 6293 isocnv3 7331 isotr 7335 f1oweALT 7961 fnmpoovd 8075 pospropd 18282 tosso 18374 isipodrs 18492 sgrppropd 18624 mndpropd 18652 mhmpropd 18680 efgred 19618 cmnpropd 19661 ringpropd 20104 lmodprop2d 20539 lsspropd 20633 islmhm2 20654 lmhmpropd 20689 islindf4 21399 assapropd 21432 scmatmats 22020 cpmatel2 22222 1elcpmat 22224 m2cpminvid2 22264 decpmataa0 22277 pmatcollpw2lem 22286 connsub 22932 hausdiag 23156 ist0-4 23240 ismet2 23846 txmetcnp 24063 txmetcn 24064 metuel2 24081 metucn 24087 isngp3 24114 nlmvscn 24211 isclmp 24620 isncvsngp 24673 ipcn 24770 iscfil2 24790 caucfil 24807 cfilresi 24819 ulmdvlem3 25921 cxpcn3 26263 tgjustf 27762 tgjustr 27763 tgcgr4 27820 perpcom 28002 brbtwn2 28201 colinearalglem2 28203 eengtrkg 28282 isarchi2 32372 opprlidlabs 32644 elmrsubrn 34580 isbnd3b 36739 iscvlat2N 38280 ishlat3N 38310 gicabl 41923 isdomn3 42028 mgmpropd 46624 mgmhmpropd 46634 rngpropd 46752 lindslinindsimp2 47222 joindm3 47680 meetdm3 47682 functhinclem1 47739 postc 47780 |
Copyright terms: Public domain | W3C validator |