Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3119 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3119 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: disjxun 5068 reu3op 6184 opreu2reurex 6186 isocnv3 7183 isotr 7187 f1oweALT 7788 fnmpoovd 7898 pospropd 17960 tosso 18052 isipodrs 18170 mndpropd 18325 mhmpropd 18351 efgred 19269 cmnpropd 19311 ringpropd 19736 lmodprop2d 20100 lsspropd 20194 islmhm2 20215 lmhmpropd 20250 islindf4 20955 assapropd 20986 scmatmats 21568 cpmatel2 21770 1elcpmat 21772 m2cpminvid2 21812 decpmataa0 21825 pmatcollpw2lem 21834 connsub 22480 hausdiag 22704 ist0-4 22788 ismet2 23394 txmetcnp 23609 txmetcn 23610 metuel2 23627 metucn 23633 isngp3 23660 nlmvscn 23757 isclmp 24166 isncvsngp 24218 ipcn 24315 iscfil2 24335 caucfil 24352 cfilresi 24364 ulmdvlem3 25466 cxpcn3 25806 tgjustf 26738 tgjustr 26739 tgcgr4 26796 perpcom 26978 brbtwn2 27176 colinearalglem2 27178 eengtrkg 27257 isarchi2 31341 elmrsubrn 33382 isbnd3b 35870 iscvlat2N 37265 ishlat3N 37295 gicabl 40840 isdomn3 40945 mgmpropd 45217 mgmhmpropd 45227 lidlmmgm 45371 lindslinindsimp2 45692 joindm3 46151 meetdm3 46153 functhinclem1 46210 postc 46249 |
Copyright terms: Public domain | W3C validator |