![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3174 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3174 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3061 |
This theorem is referenced by: disjxun 5147 reu3op 6292 opreu2reurex 6294 isocnv3 7332 isotr 7336 f1oweALT 7962 fnmpoovd 8076 pospropd 18285 tosso 18377 isipodrs 18495 mgmpropd 18577 mgmhmpropd 18624 sgrppropd 18657 mndpropd 18685 mhmpropd 18715 efgred 19658 cmnpropd 19701 rngpropd 20069 ringpropd 20177 lmodprop2d 20679 lsspropd 20773 islmhm2 20794 lmhmpropd 20829 islindf4 21613 assapropd 21646 scmatmats 22234 cpmatel2 22436 1elcpmat 22438 m2cpminvid2 22478 decpmataa0 22491 pmatcollpw2lem 22500 connsub 23146 hausdiag 23370 ist0-4 23454 ismet2 24060 txmetcnp 24277 txmetcn 24278 metuel2 24295 metucn 24301 isngp3 24328 nlmvscn 24425 isclmp 24845 isncvsngp 24898 ipcn 24995 iscfil2 25015 caucfil 25032 cfilresi 25044 ulmdvlem3 26147 cxpcn3 26489 tgjustf 27988 tgjustr 27989 tgcgr4 28046 perpcom 28228 brbtwn2 28427 colinearalglem2 28429 eengtrkg 28508 isarchi2 32598 opprlidlabs 32870 elmrsubrn 34806 isbnd3b 36957 iscvlat2N 38498 ishlat3N 38528 gicabl 42144 isdomn3 42249 lindslinindsimp2 47233 joindm3 47691 meetdm3 47693 functhinclem1 47750 postc 47791 |
Copyright terms: Public domain | W3C validator |