| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3161 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3161 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: disjxun 5117 reu3op 6281 opreu2reurex 6283 isocnv3 7324 isotr 7328 f1oweALT 7969 fnmpoovd 8084 pospropd 18335 tosso 18427 isipodrs 18545 mgmpropd 18627 mgmhmpropd 18674 sgrppropd 18707 mndpropd 18735 mhmpropd 18768 efgred 19727 cmnpropd 19770 rngpropd 20132 ringpropd 20246 isdomn3 20673 lmodprop2d 20879 lsspropd 20973 islmhm2 20994 lmhmpropd 21029 islindf4 21796 assapropd 21830 scmatmats 22447 cpmatel2 22649 1elcpmat 22651 m2cpminvid2 22691 decpmataa0 22704 pmatcollpw2lem 22713 connsub 23357 hausdiag 23581 ist0-4 23665 ismet2 24270 txmetcnp 24484 txmetcn 24485 metuel2 24502 metucn 24508 isngp3 24535 nlmvscn 24624 isclmp 25046 isncvsngp 25099 ipcn 25196 iscfil2 25216 caucfil 25233 cfilresi 25245 ulmdvlem3 26361 cxpcn3 26708 tgjustf 28398 tgjustr 28399 tgcgr4 28456 perpcom 28638 brbtwn2 28830 colinearalglem2 28832 eengtrkg 28911 isarchi2 33129 opprlidlabs 33446 elmrsubrn 35488 isbnd3b 37755 iscvlat2N 39288 ishlat3N 39318 gicabl 43070 lindslinindsimp2 48387 joindm3 48891 meetdm3 48893 fucofulem2 49170 thincpropd 49276 functhinclem1 49278 fulltermc 49344 postc 49394 islmd 49483 iscmd 49484 |
| Copyright terms: Public domain | W3C validator |