| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3153 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3153 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: disjxun 5087 reu3op 6239 opreu2reurex 6241 isocnv3 7266 isotr 7270 f1oweALT 7904 fnmpoovd 8017 pospropd 18231 tosso 18323 isipodrs 18443 mgmpropd 18559 mgmhmpropd 18606 sgrppropd 18639 mndpropd 18667 mhmpropd 18700 efgred 19660 cmnpropd 19703 rngpropd 20092 ringpropd 20206 isdomn3 20630 lmodprop2d 20857 lsspropd 20951 islmhm2 20972 lmhmpropd 21007 islindf4 21775 assapropd 21809 scmatmats 22426 cpmatel2 22628 1elcpmat 22630 m2cpminvid2 22670 decpmataa0 22683 pmatcollpw2lem 22692 connsub 23336 hausdiag 23560 ist0-4 23644 ismet2 24248 txmetcnp 24462 txmetcn 24463 metuel2 24480 metucn 24486 isngp3 24513 nlmvscn 24602 isclmp 25024 isncvsngp 25076 ipcn 25173 iscfil2 25193 caucfil 25210 cfilresi 25222 ulmdvlem3 26338 cxpcn3 26685 tgjustf 28451 tgjustr 28452 tgcgr4 28509 perpcom 28691 brbtwn2 28883 colinearalglem2 28885 eengtrkg 28964 isarchi2 33154 opprlidlabs 33450 elmrsubrn 35564 isbnd3b 37824 iscvlat2N 39422 ishlat3N 39452 gicabl 43191 lindslinindsimp2 48563 joindm3 49068 meetdm3 49070 fucofulem2 49411 thincpropd 49542 functhinclem1 49544 fulltermc 49611 postc 49669 islmd 49765 iscmd 49766 |
| Copyright terms: Public domain | W3C validator |