![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 469 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3176 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3176 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: disjxun 5147 reu3op 6292 opreu2reurex 6294 isocnv3 7329 isotr 7333 f1oweALT 7959 fnmpoovd 8073 pospropd 18280 tosso 18372 isipodrs 18490 sgrppropd 18622 mndpropd 18650 mhmpropd 18678 efgred 19616 cmnpropd 19659 ringpropd 20102 lmodprop2d 20534 lsspropd 20628 islmhm2 20649 lmhmpropd 20684 islindf4 21393 assapropd 21426 scmatmats 22013 cpmatel2 22215 1elcpmat 22217 m2cpminvid2 22257 decpmataa0 22270 pmatcollpw2lem 22279 connsub 22925 hausdiag 23149 ist0-4 23233 ismet2 23839 txmetcnp 24056 txmetcn 24057 metuel2 24074 metucn 24080 isngp3 24107 nlmvscn 24204 isclmp 24613 isncvsngp 24666 ipcn 24763 iscfil2 24783 caucfil 24800 cfilresi 24812 ulmdvlem3 25914 cxpcn3 26256 tgjustf 27724 tgjustr 27725 tgcgr4 27782 perpcom 27964 brbtwn2 28163 colinearalglem2 28165 eengtrkg 28244 isarchi2 32331 opprlidlabs 32599 elmrsubrn 34511 isbnd3b 36653 iscvlat2N 38194 ishlat3N 38224 gicabl 41841 isdomn3 41946 mgmpropd 46545 mgmhmpropd 46555 rngpropd 46673 lindslinindsimp2 47144 joindm3 47602 meetdm3 47604 functhinclem1 47661 postc 47702 |
Copyright terms: Public domain | W3C validator |