Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3111 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3111 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3069 |
This theorem is referenced by: disjxun 5072 reu3op 6195 opreu2reurex 6197 isocnv3 7203 isotr 7207 f1oweALT 7815 fnmpoovd 7927 pospropd 18045 tosso 18137 isipodrs 18255 mndpropd 18410 mhmpropd 18436 efgred 19354 cmnpropd 19396 ringpropd 19821 lmodprop2d 20185 lsspropd 20279 islmhm2 20300 lmhmpropd 20335 islindf4 21045 assapropd 21076 scmatmats 21660 cpmatel2 21862 1elcpmat 21864 m2cpminvid2 21904 decpmataa0 21917 pmatcollpw2lem 21926 connsub 22572 hausdiag 22796 ist0-4 22880 ismet2 23486 txmetcnp 23703 txmetcn 23704 metuel2 23721 metucn 23727 isngp3 23754 nlmvscn 23851 isclmp 24260 isncvsngp 24313 ipcn 24410 iscfil2 24430 caucfil 24447 cfilresi 24459 ulmdvlem3 25561 cxpcn3 25901 tgjustf 26834 tgjustr 26835 tgcgr4 26892 perpcom 27074 brbtwn2 27273 colinearalglem2 27275 eengtrkg 27354 isarchi2 31439 elmrsubrn 33482 isbnd3b 35943 iscvlat2N 37338 ishlat3N 37368 gicabl 40924 isdomn3 41029 mgmpropd 45329 mgmhmpropd 45339 lidlmmgm 45483 lindslinindsimp2 45804 joindm3 46263 meetdm3 46265 functhinclem1 46322 postc 46363 |
Copyright terms: Public domain | W3C validator |