| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | ralbidva 3150 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralbidva 3150 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: disjxun 5090 reu3op 6240 opreu2reurex 6242 isocnv3 7269 isotr 7273 f1oweALT 7907 fnmpoovd 8020 pospropd 18231 tosso 18323 isipodrs 18443 mgmpropd 18525 mgmhmpropd 18572 sgrppropd 18605 mndpropd 18633 mhmpropd 18666 efgred 19627 cmnpropd 19670 rngpropd 20059 ringpropd 20173 isdomn3 20600 lmodprop2d 20827 lsspropd 20921 islmhm2 20942 lmhmpropd 20977 islindf4 21745 assapropd 21779 scmatmats 22396 cpmatel2 22598 1elcpmat 22600 m2cpminvid2 22640 decpmataa0 22653 pmatcollpw2lem 22662 connsub 23306 hausdiag 23530 ist0-4 23614 ismet2 24219 txmetcnp 24433 txmetcn 24434 metuel2 24451 metucn 24457 isngp3 24484 nlmvscn 24573 isclmp 24995 isncvsngp 25047 ipcn 25144 iscfil2 25164 caucfil 25181 cfilresi 25193 ulmdvlem3 26309 cxpcn3 26656 tgjustf 28418 tgjustr 28419 tgcgr4 28476 perpcom 28658 brbtwn2 28850 colinearalglem2 28852 eengtrkg 28931 isarchi2 33128 opprlidlabs 33423 elmrsubrn 35503 isbnd3b 37775 iscvlat2N 39313 ishlat3N 39343 gicabl 43082 lindslinindsimp2 48458 joindm3 48963 meetdm3 48965 fucofulem2 49306 thincpropd 49437 functhinclem1 49439 fulltermc 49506 postc 49564 islmd 49660 iscmd 49661 |
| Copyright terms: Public domain | W3C validator |