Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpref1o Structured version   Visualization version   GIF version

Theorem rrx2xpref1o 46553
Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
rrx2xpref1o.1 𝐹 = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©})
Assertion
Ref Expression
rrx2xpref1o 𝐹:(ℝ Γ— ℝ)–1-1-onto→𝑅
Distinct variable group:   π‘₯,𝑦
Allowed substitution hints:   𝑅(π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem rrx2xpref1o
Dummy variables 𝑣 𝑒 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2xpref1o.1 . . . . 5 𝐹 = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©})
2 prex 5387 . . . . 5 {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©} ∈ V
31, 2fnmpoi 7990 . . . 4 𝐹 Fn (ℝ Γ— ℝ)
4 1st2nd2 7950 . . . . . . . . 9 (𝑧 ∈ (ℝ Γ— ℝ) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
54fveq2d 6841 . . . . . . . 8 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))
6 df-ov 7352 . . . . . . . 8 ((1st β€˜π‘§)𝐹(2nd β€˜π‘§)) = (πΉβ€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
75, 6eqtr4di 2795 . . . . . . 7 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘§) = ((1st β€˜π‘§)𝐹(2nd β€˜π‘§)))
8 xp1st 7943 . . . . . . . 8 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (1st β€˜π‘§) ∈ ℝ)
9 xp2nd 7944 . . . . . . . 8 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜π‘§) ∈ ℝ)
10 opeq2 4829 . . . . . . . . . 10 (π‘₯ = (1st β€˜π‘§) β†’ ⟨1, π‘₯⟩ = ⟨1, (1st β€˜π‘§)⟩)
1110preq1d 4698 . . . . . . . . 9 (π‘₯ = (1st β€˜π‘§) β†’ {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©} = {⟨1, (1st β€˜π‘§)⟩, ⟨2, π‘¦βŸ©})
12 opeq2 4829 . . . . . . . . . 10 (𝑦 = (2nd β€˜π‘§) β†’ ⟨2, π‘¦βŸ© = ⟨2, (2nd β€˜π‘§)⟩)
1312preq2d 4699 . . . . . . . . 9 (𝑦 = (2nd β€˜π‘§) β†’ {⟨1, (1st β€˜π‘§)⟩, ⟨2, π‘¦βŸ©} = {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩})
14 prex 5387 . . . . . . . . 9 {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} ∈ V
1511, 13, 1, 14ovmpo 7507 . . . . . . . 8 (((1st β€˜π‘§) ∈ ℝ ∧ (2nd β€˜π‘§) ∈ ℝ) β†’ ((1st β€˜π‘§)𝐹(2nd β€˜π‘§)) = {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩})
168, 9, 15syl2anc 584 . . . . . . 7 (𝑧 ∈ (ℝ Γ— ℝ) β†’ ((1st β€˜π‘§)𝐹(2nd β€˜π‘§)) = {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩})
177, 16eqtrd 2777 . . . . . 6 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘§) = {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩})
18 eqid 2737 . . . . . . . 8 {1, 2} = {1, 2}
19 rrx2xpreen.r . . . . . . . 8 𝑅 = (ℝ ↑m {1, 2})
2018, 19prelrrx2 46548 . . . . . . 7 (((1st β€˜π‘§) ∈ ℝ ∧ (2nd β€˜π‘§) ∈ ℝ) β†’ {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} ∈ 𝑅)
218, 9, 20syl2anc 584 . . . . . 6 (𝑧 ∈ (ℝ Γ— ℝ) β†’ {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} ∈ 𝑅)
2217, 21eqeltrd 2838 . . . . 5 (𝑧 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘§) ∈ 𝑅)
2322rgen 3064 . . . 4 βˆ€π‘§ ∈ (ℝ Γ— ℝ)(πΉβ€˜π‘§) ∈ 𝑅
24 ffnfv 7060 . . . 4 (𝐹:(ℝ Γ— ℝ)βŸΆπ‘… ↔ (𝐹 Fn (ℝ Γ— ℝ) ∧ βˆ€π‘§ ∈ (ℝ Γ— ℝ)(πΉβ€˜π‘§) ∈ 𝑅))
253, 23, 24mpbir2an 709 . . 3 𝐹:(ℝ Γ— ℝ)βŸΆπ‘…
26 opex 5419 . . . . . . . 8 ⟨1, (1st β€˜π‘§)⟩ ∈ V
27 opex 5419 . . . . . . . 8 ⟨2, (2nd β€˜π‘§)⟩ ∈ V
28 opex 5419 . . . . . . . 8 ⟨1, (1st β€˜π‘€)⟩ ∈ V
29 opex 5419 . . . . . . . 8 ⟨2, (2nd β€˜π‘€)⟩ ∈ V
3026, 27, 28, 29preq12b 4806 . . . . . . 7 ({⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩} ↔ ((⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩) ∨ (⟨1, (1st β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩)))
31 1ex 11084 . . . . . . . . . . . 12 1 ∈ V
32 fvex 6850 . . . . . . . . . . . 12 (1st β€˜π‘§) ∈ V
3331, 32opth 5431 . . . . . . . . . . 11 (⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ↔ (1 = 1 ∧ (1st β€˜π‘§) = (1st β€˜π‘€)))
3433simprbi 497 . . . . . . . . . 10 (⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ β†’ (1st β€˜π‘§) = (1st β€˜π‘€))
35 2ex 12163 . . . . . . . . . . . 12 2 ∈ V
36 fvex 6850 . . . . . . . . . . . 12 (2nd β€˜π‘§) ∈ V
3735, 36opth 5431 . . . . . . . . . . 11 (⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ ↔ (2 = 2 ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€)))
3837simprbi 497 . . . . . . . . . 10 (⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ β†’ (2nd β€˜π‘§) = (2nd β€˜π‘€))
3934, 38anim12i 613 . . . . . . . . 9 ((⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€)))
4039a1d 25 . . . . . . . 8 ((⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩) β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
4131, 32opth 5431 . . . . . . . . 9 (⟨1, (1st β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ ↔ (1 = 2 ∧ (1st β€˜π‘§) = (2nd β€˜π‘€)))
4235, 36opth 5431 . . . . . . . . 9 (⟨2, (2nd β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ↔ (2 = 1 ∧ (2nd β€˜π‘§) = (1st β€˜π‘€)))
43 1ne2 12294 . . . . . . . . . . 11 1 β‰  2
44 eqneqall 2952 . . . . . . . . . . 11 (1 = 2 β†’ (1 β‰  2 β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€)))))
4543, 44mpi 20 . . . . . . . . . 10 (1 = 2 β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
4645ad2antrr 724 . . . . . . . . 9 (((1 = 2 ∧ (1st β€˜π‘§) = (2nd β€˜π‘€)) ∧ (2 = 1 ∧ (2nd β€˜π‘§) = (1st β€˜π‘€))) β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
4741, 42, 46syl2anb 598 . . . . . . . 8 ((⟨1, (1st β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩) β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
4840, 47jaoi 855 . . . . . . 7 (((⟨1, (1st β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩) ∨ (⟨1, (1st β€˜π‘§)⟩ = ⟨2, (2nd β€˜π‘€)⟩ ∧ ⟨2, (2nd β€˜π‘§)⟩ = ⟨1, (1st β€˜π‘€)⟩)) β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
4930, 48sylbi 216 . . . . . 6 ({⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩} β†’ ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
5049com12 32 . . . . 5 ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ({⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩} β†’ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
51 1st2nd2 7950 . . . . . . . . 9 (𝑀 ∈ (ℝ Γ— ℝ) β†’ 𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
5251fveq2d 6841 . . . . . . . 8 (𝑀 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘€) = (πΉβ€˜βŸ¨(1st β€˜π‘€), (2nd β€˜π‘€)⟩))
53 df-ov 7352 . . . . . . . 8 ((1st β€˜π‘€)𝐹(2nd β€˜π‘€)) = (πΉβ€˜βŸ¨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
5452, 53eqtr4di 2795 . . . . . . 7 (𝑀 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘€) = ((1st β€˜π‘€)𝐹(2nd β€˜π‘€)))
55 xp1st 7943 . . . . . . . 8 (𝑀 ∈ (ℝ Γ— ℝ) β†’ (1st β€˜π‘€) ∈ ℝ)
56 xp2nd 7944 . . . . . . . 8 (𝑀 ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜π‘€) ∈ ℝ)
57 opeq2 4829 . . . . . . . . . 10 (π‘₯ = (1st β€˜π‘€) β†’ ⟨1, π‘₯⟩ = ⟨1, (1st β€˜π‘€)⟩)
5857preq1d 4698 . . . . . . . . 9 (π‘₯ = (1st β€˜π‘€) β†’ {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, π‘¦βŸ©})
59 opeq2 4829 . . . . . . . . . 10 (𝑦 = (2nd β€˜π‘€) β†’ ⟨2, π‘¦βŸ© = ⟨2, (2nd β€˜π‘€)⟩)
6059preq2d 4699 . . . . . . . . 9 (𝑦 = (2nd β€˜π‘€) β†’ {⟨1, (1st β€˜π‘€)⟩, ⟨2, π‘¦βŸ©} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩})
61 prex 5387 . . . . . . . . 9 {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩} ∈ V
6258, 60, 1, 61ovmpo 7507 . . . . . . . 8 (((1st β€˜π‘€) ∈ ℝ ∧ (2nd β€˜π‘€) ∈ ℝ) β†’ ((1st β€˜π‘€)𝐹(2nd β€˜π‘€)) = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩})
6355, 56, 62syl2anc 584 . . . . . . 7 (𝑀 ∈ (ℝ Γ— ℝ) β†’ ((1st β€˜π‘€)𝐹(2nd β€˜π‘€)) = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩})
6454, 63eqtrd 2777 . . . . . 6 (𝑀 ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘€) = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩})
6517, 64eqeqan12d 2751 . . . . 5 ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) ↔ {⟨1, (1st β€˜π‘§)⟩, ⟨2, (2nd β€˜π‘§)⟩} = {⟨1, (1st β€˜π‘€)⟩, ⟨2, (2nd β€˜π‘€)⟩}))
664, 51eqeqan12d 2751 . . . . . 6 ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ (𝑧 = 𝑀 ↔ ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩))
6732, 36opth 5431 . . . . . 6 (⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ ↔ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€)))
6866, 67bitrdi 286 . . . . 5 ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ (𝑧 = 𝑀 ↔ ((1st β€˜π‘§) = (1st β€˜π‘€) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘€))))
6950, 65, 683imtr4d 293 . . . 4 ((𝑧 ∈ (ℝ Γ— ℝ) ∧ 𝑀 ∈ (ℝ Γ— ℝ)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀))
7069rgen2 3192 . . 3 βˆ€π‘§ ∈ (ℝ Γ— ℝ)βˆ€π‘€ ∈ (ℝ Γ— ℝ)((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀)
71 dff13 7196 . . 3 (𝐹:(ℝ Γ— ℝ)–1-1→𝑅 ↔ (𝐹:(ℝ Γ— ℝ)βŸΆπ‘… ∧ βˆ€π‘§ ∈ (ℝ Γ— ℝ)βˆ€π‘€ ∈ (ℝ Γ— ℝ)((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀)))
7225, 70, 71mpbir2an 709 . 2 𝐹:(ℝ Γ— ℝ)–1-1→𝑅
7319eleq2i 2829 . . . . . . . 8 (𝑀 ∈ 𝑅 ↔ 𝑀 ∈ (ℝ ↑m {1, 2}))
74 reex 11075 . . . . . . . . 9 ℝ ∈ V
75 prex 5387 . . . . . . . . 9 {1, 2} ∈ V
7674, 75elmap 8742 . . . . . . . 8 (𝑀 ∈ (ℝ ↑m {1, 2}) ↔ 𝑀:{1, 2}βŸΆβ„)
77 1re 11088 . . . . . . . . 9 1 ∈ ℝ
78 2re 12160 . . . . . . . . 9 2 ∈ ℝ
79 fpr2g 7155 . . . . . . . . 9 ((1 ∈ ℝ ∧ 2 ∈ ℝ) β†’ (𝑀:{1, 2}βŸΆβ„ ↔ ((π‘€β€˜1) ∈ ℝ ∧ (π‘€β€˜2) ∈ ℝ ∧ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩})))
8077, 78, 79mp2an 690 . . . . . . . 8 (𝑀:{1, 2}βŸΆβ„ ↔ ((π‘€β€˜1) ∈ ℝ ∧ (π‘€β€˜2) ∈ ℝ ∧ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩}))
8173, 76, 803bitri 296 . . . . . . 7 (𝑀 ∈ 𝑅 ↔ ((π‘€β€˜1) ∈ ℝ ∧ (π‘€β€˜2) ∈ ℝ ∧ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩}))
82 opeq2 4829 . . . . . . . . . 10 (𝑒 = (π‘€β€˜1) β†’ ⟨1, π‘’βŸ© = ⟨1, (π‘€β€˜1)⟩)
8382preq1d 4698 . . . . . . . . 9 (𝑒 = (π‘€β€˜1) β†’ {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©} = {⟨1, (π‘€β€˜1)⟩, ⟨2, π‘£βŸ©})
8483eqeq2d 2748 . . . . . . . 8 (𝑒 = (π‘€β€˜1) β†’ (𝑀 = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©} ↔ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, π‘£βŸ©}))
85 opeq2 4829 . . . . . . . . . 10 (𝑣 = (π‘€β€˜2) β†’ ⟨2, π‘£βŸ© = ⟨2, (π‘€β€˜2)⟩)
8685preq2d 4699 . . . . . . . . 9 (𝑣 = (π‘€β€˜2) β†’ {⟨1, (π‘€β€˜1)⟩, ⟨2, π‘£βŸ©} = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩})
8786eqeq2d 2748 . . . . . . . 8 (𝑣 = (π‘€β€˜2) β†’ (𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, π‘£βŸ©} ↔ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩}))
8884, 87rspc2ev 3590 . . . . . . 7 (((π‘€β€˜1) ∈ ℝ ∧ (π‘€β€˜2) ∈ ℝ ∧ 𝑀 = {⟨1, (π‘€β€˜1)⟩, ⟨2, (π‘€β€˜2)⟩}) β†’ βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©})
8981, 88sylbi 216 . . . . . 6 (𝑀 ∈ 𝑅 β†’ βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©})
90 opeq2 4829 . . . . . . . . . 10 (π‘₯ = 𝑒 β†’ ⟨1, π‘₯⟩ = ⟨1, π‘’βŸ©)
9190preq1d 4698 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ {⟨1, π‘₯⟩, ⟨2, π‘¦βŸ©} = {⟨1, π‘’βŸ©, ⟨2, π‘¦βŸ©})
92 opeq2 4829 . . . . . . . . . 10 (𝑦 = 𝑣 β†’ ⟨2, π‘¦βŸ© = ⟨2, π‘£βŸ©)
9392preq2d 4699 . . . . . . . . 9 (𝑦 = 𝑣 β†’ {⟨1, π‘’βŸ©, ⟨2, π‘¦βŸ©} = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©})
94 prex 5387 . . . . . . . . 9 {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©} ∈ V
9591, 93, 1, 94ovmpo 7507 . . . . . . . 8 ((𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ (𝑒𝐹𝑣) = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©})
9695eqeq2d 2748 . . . . . . 7 ((𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ (𝑀 = (𝑒𝐹𝑣) ↔ 𝑀 = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©}))
97962rexbiia 3207 . . . . . 6 (βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = (𝑒𝐹𝑣) ↔ βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = {⟨1, π‘’βŸ©, ⟨2, π‘£βŸ©})
9889, 97sylibr 233 . . . . 5 (𝑀 ∈ 𝑅 β†’ βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = (𝑒𝐹𝑣))
99 fveq2 6837 . . . . . . . 8 (𝑧 = βŸ¨π‘’, π‘£βŸ© β†’ (πΉβ€˜π‘§) = (πΉβ€˜βŸ¨π‘’, π‘£βŸ©))
100 df-ov 7352 . . . . . . . 8 (𝑒𝐹𝑣) = (πΉβ€˜βŸ¨π‘’, π‘£βŸ©)
10199, 100eqtr4di 2795 . . . . . . 7 (𝑧 = βŸ¨π‘’, π‘£βŸ© β†’ (πΉβ€˜π‘§) = (𝑒𝐹𝑣))
102101eqeq2d 2748 . . . . . 6 (𝑧 = βŸ¨π‘’, π‘£βŸ© β†’ (𝑀 = (πΉβ€˜π‘§) ↔ 𝑀 = (𝑒𝐹𝑣)))
103102rexxp 5794 . . . . 5 (βˆƒπ‘§ ∈ (ℝ Γ— ℝ)𝑀 = (πΉβ€˜π‘§) ↔ βˆƒπ‘’ ∈ ℝ βˆƒπ‘£ ∈ ℝ 𝑀 = (𝑒𝐹𝑣))
10498, 103sylibr 233 . . . 4 (𝑀 ∈ 𝑅 β†’ βˆƒπ‘§ ∈ (ℝ Γ— ℝ)𝑀 = (πΉβ€˜π‘§))
105104rgen 3064 . . 3 βˆ€π‘€ ∈ 𝑅 βˆƒπ‘§ ∈ (ℝ Γ— ℝ)𝑀 = (πΉβ€˜π‘§)
106 dffo3 7046 . . 3 (𝐹:(ℝ Γ— ℝ)–onto→𝑅 ↔ (𝐹:(ℝ Γ— ℝ)βŸΆπ‘… ∧ βˆ€π‘€ ∈ 𝑅 βˆƒπ‘§ ∈ (ℝ Γ— ℝ)𝑀 = (πΉβ€˜π‘§)))
10725, 105, 106mpbir2an 709 . 2 𝐹:(ℝ Γ— ℝ)–onto→𝑅
108 df-f1o 6498 . 2 (𝐹:(ℝ Γ— ℝ)–1-1-onto→𝑅 ↔ (𝐹:(ℝ Γ— ℝ)–1-1→𝑅 ∧ 𝐹:(ℝ Γ— ℝ)–onto→𝑅))
10972, 107, 108mpbir2an 709 1 𝐹:(ℝ Γ— ℝ)–1-1-onto→𝑅
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  {cpr 4586  βŸ¨cop 4590   Γ— cxp 5628   Fn wfn 6486  βŸΆwf 6487  β€“1-1β†’wf1 6488  β€“ontoβ†’wfo 6489  β€“1-1-ontoβ†’wf1o 6490  β€˜cfv 6491  (class class class)co 7349   ∈ cmpo 7351  1st c1st 7909  2nd c2nd 7910   ↑m cmap 8698  β„cr 10983  1c1 10985  2c2 12141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-po 5542  df-so 5543  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7911  df-2nd 7912  df-er 8581  df-map 8700  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-2 12149
This theorem is referenced by:  rrx2xpreen  46554  rrx2plordisom  46558
  Copyright terms: Public domain W3C validator