Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpref1o Structured version   Visualization version   GIF version

Theorem rrx2xpref1o 44712
Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
rrx2xpref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
Assertion
Ref Expression
rrx2xpref1o 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rrx2xpref1o
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2xpref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
2 prex 5335 . . . . 5 {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ V
31, 2fnmpoi 7770 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7730 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6676 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 7161 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6syl6eqr 2876 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7723 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7724 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 opeq2 4806 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑧)⟩)
1110preq1d 4677 . . . . . . . . 9 (𝑥 = (1st𝑧) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩})
12 opeq2 4806 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑧)⟩)
1312preq2d 4678 . . . . . . . . 9 (𝑦 = (2nd𝑧) → {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
14 prex 5335 . . . . . . . . 9 {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ V
1511, 13, 1, 14ovmpo 7312 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
168, 9, 15syl2anc 586 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
177, 16eqtrd 2858 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
18 eqid 2823 . . . . . . . 8 {1, 2} = {1, 2}
19 rrx2xpreen.r . . . . . . . 8 𝑅 = (ℝ ↑m {1, 2})
2018, 19prelrrx2 44707 . . . . . . 7 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
218, 9, 20syl2anc 586 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
2217, 21eqeltrd 2915 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ 𝑅)
2322rgen 3150 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅
24 ffnfv 6884 . . . 4 (𝐹:(ℝ × ℝ)⟶𝑅 ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅))
253, 23, 24mpbir2an 709 . . 3 𝐹:(ℝ × ℝ)⟶𝑅
26 opex 5358 . . . . . . . 8 ⟨1, (1st𝑧)⟩ ∈ V
27 opex 5358 . . . . . . . 8 ⟨2, (2nd𝑧)⟩ ∈ V
28 opex 5358 . . . . . . . 8 ⟨1, (1st𝑤)⟩ ∈ V
29 opex 5358 . . . . . . . 8 ⟨2, (2nd𝑤)⟩ ∈ V
3026, 27, 28, 29preq12b 4783 . . . . . . 7 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ↔ ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)))
31 1ex 10639 . . . . . . . . . . . 12 1 ∈ V
32 fvex 6685 . . . . . . . . . . . 12 (1st𝑧) ∈ V
3331, 32opth 5370 . . . . . . . . . . 11 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (1 = 1 ∧ (1st𝑧) = (1st𝑤)))
3433simprbi 499 . . . . . . . . . 10 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ → (1st𝑧) = (1st𝑤))
35 2ex 11717 . . . . . . . . . . . 12 2 ∈ V
36 fvex 6685 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
3735, 36opth 5370 . . . . . . . . . . 11 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (2 = 2 ∧ (2nd𝑧) = (2nd𝑤)))
3837simprbi 499 . . . . . . . . . 10 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ → (2nd𝑧) = (2nd𝑤))
3934, 38anim12i 614 . . . . . . . . 9 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4039a1d 25 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4131, 32opth 5370 . . . . . . . . 9 (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (1 = 2 ∧ (1st𝑧) = (2nd𝑤)))
4235, 36opth 5370 . . . . . . . . 9 (⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (2 = 1 ∧ (2nd𝑧) = (1st𝑤)))
43 1ne2 11848 . . . . . . . . . . 11 1 ≠ 2
44 eqneqall 3029 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))))
4543, 44mpi 20 . . . . . . . . . 10 (1 = 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4645ad2antrr 724 . . . . . . . . 9 (((1 = 2 ∧ (1st𝑧) = (2nd𝑤)) ∧ (2 = 1 ∧ (2nd𝑧) = (1st𝑤))) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4741, 42, 46syl2anb 599 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4840, 47jaoi 853 . . . . . . 7 (((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4930, 48sylbi 219 . . . . . 6 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5049com12 32 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
51 1st2nd2 7730 . . . . . . . . 9 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
5251fveq2d 6676 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
53 df-ov 7161 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
5452, 53syl6eqr 2876 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤)𝐹(2nd𝑤)))
55 xp1st 7723 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
56 xp2nd 7724 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
57 opeq2 4806 . . . . . . . . . 10 (𝑥 = (1st𝑤) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑤)⟩)
5857preq1d 4677 . . . . . . . . 9 (𝑥 = (1st𝑤) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩})
59 opeq2 4806 . . . . . . . . . 10 (𝑦 = (2nd𝑤) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑤)⟩)
6059preq2d 4678 . . . . . . . . 9 (𝑦 = (2nd𝑤) → {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
61 prex 5335 . . . . . . . . 9 {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ∈ V
6258, 60, 1, 61ovmpo 7312 . . . . . . . 8 (((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6355, 56, 62syl2anc 586 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6454, 63eqtrd 2858 . . . . . 6 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6517, 64eqeqan12d 2840 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩}))
664, 51eqeqan12d 2840 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
6732, 36opth 5370 . . . . . 6 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
6866, 67syl6bb 289 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
6950, 65, 683imtr4d 296 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7069rgen2 3205 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
71 dff13 7015 . . 3 (𝐹:(ℝ × ℝ)–1-1𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7225, 70, 71mpbir2an 709 . 2 𝐹:(ℝ × ℝ)–1-1𝑅
7319eleq2i 2906 . . . . . . . 8 (𝑤𝑅𝑤 ∈ (ℝ ↑m {1, 2}))
74 reex 10630 . . . . . . . . 9 ℝ ∈ V
75 prex 5335 . . . . . . . . 9 {1, 2} ∈ V
7674, 75elmap 8437 . . . . . . . 8 (𝑤 ∈ (ℝ ↑m {1, 2}) ↔ 𝑤:{1, 2}⟶ℝ)
77 1re 10643 . . . . . . . . 9 1 ∈ ℝ
78 2re 11714 . . . . . . . . 9 2 ∈ ℝ
79 fpr2g 6976 . . . . . . . . 9 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})))
8077, 78, 79mp2an 690 . . . . . . . 8 (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8173, 76, 803bitri 299 . . . . . . 7 (𝑤𝑅 ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
82 opeq2 4806 . . . . . . . . . 10 (𝑢 = (𝑤‘1) → ⟨1, 𝑢⟩ = ⟨1, (𝑤‘1)⟩)
8382preq1d 4677 . . . . . . . . 9 (𝑢 = (𝑤‘1) → {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩})
8483eqeq2d 2834 . . . . . . . 8 (𝑢 = (𝑤‘1) → (𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩}))
85 opeq2 4806 . . . . . . . . . 10 (𝑣 = (𝑤‘2) → ⟨2, 𝑣⟩ = ⟨2, (𝑤‘2)⟩)
8685preq2d 4678 . . . . . . . . 9 (𝑣 = (𝑤‘2) → {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})
8786eqeq2d 2834 . . . . . . . 8 (𝑣 = (𝑤‘2) → (𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8884, 87rspc2ev 3637 . . . . . . 7 (((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
8981, 88sylbi 219 . . . . . 6 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
90 opeq2 4806 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨1, 𝑥⟩ = ⟨1, 𝑢⟩)
9190preq1d 4677 . . . . . . . . 9 (𝑥 = 𝑢 → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑦⟩})
92 opeq2 4806 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨2, 𝑦⟩ = ⟨2, 𝑣⟩)
9392preq2d 4678 . . . . . . . . 9 (𝑦 = 𝑣 → {⟨1, 𝑢⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
94 prex 5335 . . . . . . . . 9 {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ∈ V
9591, 93, 1, 94ovmpo 7312 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9695eqeq2d 2834 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩}))
97962rexbiia 3300 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9889, 97sylibr 236 . . . . 5 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
99 fveq2 6672 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
100 df-ov 7161 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
10199, 100syl6eqr 2876 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
102101eqeq2d 2834 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
103102rexxp 5715 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
10498, 103sylibr 236 . . . 4 (𝑤𝑅 → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
105104rgen 3150 . . 3 𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
106 dffo3 6870 . . 3 (𝐹:(ℝ × ℝ)–onto𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
10725, 105, 106mpbir2an 709 . 2 𝐹:(ℝ × ℝ)–onto𝑅
108 df-f1o 6364 . 2 (𝐹:(ℝ × ℝ)–1-1-onto𝑅 ↔ (𝐹:(ℝ × ℝ)–1-1𝑅𝐹:(ℝ × ℝ)–onto𝑅))
10972, 107, 108mpbir2an 709 1 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {cpr 4571  cop 4575   × cxp 5555   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  m cmap 8408  cr 10538  1c1 10540  2c2 11695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-2 11703
This theorem is referenced by:  rrx2xpreen  44713  rrx2plordisom  44717
  Copyright terms: Public domain W3C validator