Step | Hyp | Ref
| Expression |
1 | | rrx2xpref1o.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {〈1, 𝑥〉, 〈2, 𝑦〉}) |
2 | | prex 5355 |
. . . . 5
⊢ {〈1,
𝑥〉, 〈2, 𝑦〉} ∈
V |
3 | 1, 2 | fnmpoi 7910 |
. . . 4
⊢ 𝐹 Fn (ℝ ×
ℝ) |
4 | | 1st2nd2 7870 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℝ ×
ℝ) → 𝑧 =
〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
5 | 4 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
6 | | df-ov 7278 |
. . . . . . . 8
⊢
((1st ‘𝑧)𝐹(2nd ‘𝑧)) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
7 | 5, 6 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) |
8 | | xp1st 7863 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (1st ‘𝑧) ∈ ℝ) |
9 | | xp2nd 7864 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (2nd ‘𝑧) ∈ ℝ) |
10 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑧) → 〈1, 𝑥〉 = 〈1,
(1st ‘𝑧)〉) |
11 | 10 | preq1d 4675 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) → {〈1, 𝑥〉, 〈2, 𝑦〉} = {〈1,
(1st ‘𝑧)〉, 〈2, 𝑦〉}) |
12 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑧) → 〈2, 𝑦〉 = 〈2,
(2nd ‘𝑧)〉) |
13 | 12 | preq2d 4676 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → {〈1,
(1st ‘𝑧)〉, 〈2, 𝑦〉} = {〈1, (1st
‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉}) |
14 | | prex 5355 |
. . . . . . . . 9
⊢ {〈1,
(1st ‘𝑧)〉, 〈2, (2nd
‘𝑧)〉} ∈
V |
15 | 11, 13, 1, 14 | ovmpo 7433 |
. . . . . . . 8
⊢
(((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ)
→ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = {〈1, (1st ‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉}) |
16 | 8, 9, 15 | syl2anc 584 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = {〈1, (1st ‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉}) |
17 | 7, 16 | eqtrd 2778 |
. . . . . 6
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = {〈1, (1st ‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉}) |
18 | | eqid 2738 |
. . . . . . . 8
⊢ {1, 2} =
{1, 2} |
19 | | rrx2xpreen.r |
. . . . . . . 8
⊢ 𝑅 = (ℝ ↑m
{1, 2}) |
20 | 18, 19 | prelrrx2 46059 |
. . . . . . 7
⊢
(((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ)
→ {〈1, (1st ‘𝑧)〉, 〈2, (2nd
‘𝑧)〉} ∈
𝑅) |
21 | 8, 9, 20 | syl2anc 584 |
. . . . . 6
⊢ (𝑧 ∈ (ℝ ×
ℝ) → {〈1, (1st ‘𝑧)〉, 〈2, (2nd
‘𝑧)〉} ∈
𝑅) |
22 | 17, 21 | eqeltrd 2839 |
. . . . 5
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) ∈ 𝑅) |
23 | 22 | rgen 3074 |
. . . 4
⊢
∀𝑧 ∈
(ℝ × ℝ)(𝐹‘𝑧) ∈ 𝑅 |
24 | | ffnfv 6992 |
. . . 4
⊢ (𝐹:(ℝ ×
ℝ)⟶𝑅 ↔
(𝐹 Fn (ℝ ×
ℝ) ∧ ∀𝑧
∈ (ℝ × ℝ)(𝐹‘𝑧) ∈ 𝑅)) |
25 | 3, 23, 24 | mpbir2an 708 |
. . 3
⊢ 𝐹:(ℝ ×
ℝ)⟶𝑅 |
26 | | opex 5379 |
. . . . . . . 8
⊢ 〈1,
(1st ‘𝑧)〉 ∈ V |
27 | | opex 5379 |
. . . . . . . 8
⊢ 〈2,
(2nd ‘𝑧)〉 ∈ V |
28 | | opex 5379 |
. . . . . . . 8
⊢ 〈1,
(1st ‘𝑤)〉 ∈ V |
29 | | opex 5379 |
. . . . . . . 8
⊢ 〈2,
(2nd ‘𝑤)〉 ∈ V |
30 | 26, 27, 28, 29 | preq12b 4781 |
. . . . . . 7
⊢
({〈1, (1st ‘𝑧)〉, 〈2, (2nd
‘𝑧)〉} =
{〈1, (1st ‘𝑤)〉, 〈2, (2nd
‘𝑤)〉} ↔
((〈1, (1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉) ∨
(〈1, (1st ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉))) |
31 | | 1ex 10971 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
32 | | fvex 6787 |
. . . . . . . . . . . 12
⊢
(1st ‘𝑧) ∈ V |
33 | 31, 32 | opth 5391 |
. . . . . . . . . . 11
⊢ (〈1,
(1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ↔ (1 =
1 ∧ (1st ‘𝑧) = (1st ‘𝑤))) |
34 | 33 | simprbi 497 |
. . . . . . . . . 10
⊢ (〈1,
(1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 →
(1st ‘𝑧) =
(1st ‘𝑤)) |
35 | | 2ex 12050 |
. . . . . . . . . . . 12
⊢ 2 ∈
V |
36 | | fvex 6787 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝑧) ∈ V |
37 | 35, 36 | opth 5391 |
. . . . . . . . . . 11
⊢ (〈2,
(2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 ↔ (2 =
2 ∧ (2nd ‘𝑧) = (2nd ‘𝑤))) |
38 | 37 | simprbi 497 |
. . . . . . . . . 10
⊢ (〈2,
(2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 →
(2nd ‘𝑧) =
(2nd ‘𝑤)) |
39 | 34, 38 | anim12i 613 |
. . . . . . . . 9
⊢
((〈1, (1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉) →
((1st ‘𝑧)
= (1st ‘𝑤)
∧ (2nd ‘𝑧) = (2nd ‘𝑤))) |
40 | 39 | a1d 25 |
. . . . . . . 8
⊢
((〈1, (1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉) →
((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
41 | 31, 32 | opth 5391 |
. . . . . . . . 9
⊢ (〈1,
(1st ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 ↔ (1 =
2 ∧ (1st ‘𝑧) = (2nd ‘𝑤))) |
42 | 35, 36 | opth 5391 |
. . . . . . . . 9
⊢ (〈2,
(2nd ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ↔ (2 =
1 ∧ (2nd ‘𝑧) = (1st ‘𝑤))) |
43 | | 1ne2 12181 |
. . . . . . . . . . 11
⊢ 1 ≠
2 |
44 | | eqneqall 2954 |
. . . . . . . . . . 11
⊢ (1 = 2
→ (1 ≠ 2 → ((𝑧
∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) →
((1st ‘𝑧)
= (1st ‘𝑤)
∧ (2nd ‘𝑧) = (2nd ‘𝑤))))) |
45 | 43, 44 | mpi 20 |
. . . . . . . . . 10
⊢ (1 = 2
→ ((𝑧 ∈ (ℝ
× ℝ) ∧ 𝑤
∈ (ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd
‘𝑧) = (2nd
‘𝑤)))) |
46 | 45 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((1 = 2
∧ (1st ‘𝑧) = (2nd ‘𝑤)) ∧ (2 = 1 ∧ (2nd
‘𝑧) = (1st
‘𝑤))) → ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
47 | 41, 42, 46 | syl2anb 598 |
. . . . . . . 8
⊢
((〈1, (1st ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉) →
((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
48 | 40, 47 | jaoi 854 |
. . . . . . 7
⊢
(((〈1, (1st ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉) ∨
(〈1, (1st ‘𝑧)〉 = 〈2, (2nd
‘𝑤)〉 ∧
〈2, (2nd ‘𝑧)〉 = 〈1, (1st
‘𝑤)〉)) →
((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
49 | 30, 48 | sylbi 216 |
. . . . . 6
⊢
({〈1, (1st ‘𝑧)〉, 〈2, (2nd
‘𝑧)〉} =
{〈1, (1st ‘𝑤)〉, 〈2, (2nd
‘𝑤)〉} →
((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
50 | 49 | com12 32 |
. . . . 5
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ({〈1, (1st ‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉} = {〈1, (1st
‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉} → ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd
‘𝑧) = (2nd
‘𝑤)))) |
51 | | 1st2nd2 7870 |
. . . . . . . . 9
⊢ (𝑤 ∈ (ℝ ×
ℝ) → 𝑤 =
〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
52 | 51 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (𝐹‘𝑤) = (𝐹‘〈(1st ‘𝑤), (2nd ‘𝑤)〉)) |
53 | | df-ov 7278 |
. . . . . . . 8
⊢
((1st ‘𝑤)𝐹(2nd ‘𝑤)) = (𝐹‘〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
54 | 52, 53 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (𝐹‘𝑤) = ((1st ‘𝑤)𝐹(2nd ‘𝑤))) |
55 | | xp1st 7863 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (1st ‘𝑤) ∈ ℝ) |
56 | | xp2nd 7864 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (2nd ‘𝑤) ∈ ℝ) |
57 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑤) → 〈1, 𝑥〉 = 〈1,
(1st ‘𝑤)〉) |
58 | 57 | preq1d 4675 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑤) → {〈1, 𝑥〉, 〈2, 𝑦〉} = {〈1,
(1st ‘𝑤)〉, 〈2, 𝑦〉}) |
59 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑤) → 〈2, 𝑦〉 = 〈2,
(2nd ‘𝑤)〉) |
60 | 59 | preq2d 4676 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑤) → {〈1,
(1st ‘𝑤)〉, 〈2, 𝑦〉} = {〈1, (1st
‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉}) |
61 | | prex 5355 |
. . . . . . . . 9
⊢ {〈1,
(1st ‘𝑤)〉, 〈2, (2nd
‘𝑤)〉} ∈
V |
62 | 58, 60, 1, 61 | ovmpo 7433 |
. . . . . . . 8
⊢
(((1st ‘𝑤) ∈ ℝ ∧ (2nd
‘𝑤) ∈ ℝ)
→ ((1st ‘𝑤)𝐹(2nd ‘𝑤)) = {〈1, (1st ‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉}) |
63 | 55, 56, 62 | syl2anc 584 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → ((1st ‘𝑤)𝐹(2nd ‘𝑤)) = {〈1, (1st ‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉}) |
64 | 54, 63 | eqtrd 2778 |
. . . . . 6
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (𝐹‘𝑤) = {〈1, (1st ‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉}) |
65 | 17, 64 | eqeqan12d 2752 |
. . . . 5
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ {〈1, (1st
‘𝑧)〉, 〈2,
(2nd ‘𝑧)〉} = {〈1, (1st
‘𝑤)〉, 〈2,
(2nd ‘𝑤)〉})) |
66 | 4, 51 | eqeqan12d 2752 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ 〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st
‘𝑤), (2nd
‘𝑤)〉)) |
67 | 32, 36 | opth 5391 |
. . . . . 6
⊢
(〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ↔ ((1st
‘𝑧) = (1st
‘𝑤) ∧
(2nd ‘𝑧) =
(2nd ‘𝑤))) |
68 | 66, 67 | bitrdi 287 |
. . . . 5
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd
‘𝑧) = (2nd
‘𝑤)))) |
69 | 50, 65, 68 | 3imtr4d 294 |
. . . 4
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
70 | 69 | rgen2 3120 |
. . 3
⊢
∀𝑧 ∈
(ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
71 | | dff13 7128 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–1-1→𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑧 ∈ (ℝ ×
ℝ)∀𝑤 ∈
(ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
72 | 25, 70, 71 | mpbir2an 708 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–1-1→𝑅 |
73 | 19 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑅 ↔ 𝑤 ∈ (ℝ ↑m {1,
2})) |
74 | | reex 10962 |
. . . . . . . . 9
⊢ ℝ
∈ V |
75 | | prex 5355 |
. . . . . . . . 9
⊢ {1, 2}
∈ V |
76 | 74, 75 | elmap 8659 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ
↑m {1, 2}) ↔ 𝑤:{1, 2}⟶ℝ) |
77 | | 1re 10975 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
78 | | 2re 12047 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
79 | | fpr2g 7087 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ 2 ∈ ℝ) → (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧
(𝑤‘2) ∈ ℝ
∧ 𝑤 = {〈1, (𝑤‘1)〉, 〈2, (𝑤‘2)〉}))) |
80 | 77, 78, 79 | mp2an 689 |
. . . . . . . 8
⊢ (𝑤:{1, 2}⟶ℝ ↔
((𝑤‘1) ∈ ℝ
∧ (𝑤‘2) ∈
ℝ ∧ 𝑤 = {〈1,
(𝑤‘1)〉, 〈2,
(𝑤‘2)〉})) |
81 | 73, 76, 80 | 3bitri 297 |
. . . . . . 7
⊢ (𝑤 ∈ 𝑅 ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧
𝑤 = {〈1, (𝑤‘1)〉, 〈2, (𝑤‘2)〉})) |
82 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑤‘1) → 〈1, 𝑢〉 = 〈1, (𝑤‘1)〉) |
83 | 82 | preq1d 4675 |
. . . . . . . . 9
⊢ (𝑢 = (𝑤‘1) → {〈1, 𝑢〉, 〈2, 𝑣〉} = {〈1, (𝑤‘1)〉, 〈2, 𝑣〉}) |
84 | 83 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑢 = (𝑤‘1) → (𝑤 = {〈1, 𝑢〉, 〈2, 𝑣〉} ↔ 𝑤 = {〈1, (𝑤‘1)〉, 〈2, 𝑣〉})) |
85 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑤‘2) → 〈2, 𝑣〉 = 〈2, (𝑤‘2)〉) |
86 | 85 | preq2d 4676 |
. . . . . . . . 9
⊢ (𝑣 = (𝑤‘2) → {〈1, (𝑤‘1)〉, 〈2, 𝑣〉} = {〈1, (𝑤‘1)〉, 〈2, (𝑤‘2)〉}) |
87 | 86 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑣 = (𝑤‘2) → (𝑤 = {〈1, (𝑤‘1)〉, 〈2, 𝑣〉} ↔ 𝑤 = {〈1, (𝑤‘1)〉, 〈2, (𝑤‘2)〉})) |
88 | 84, 87 | rspc2ev 3572 |
. . . . . . 7
⊢ (((𝑤‘1) ∈ ℝ ∧
(𝑤‘2) ∈ ℝ
∧ 𝑤 = {〈1, (𝑤‘1)〉, 〈2, (𝑤‘2)〉}) →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝑤 = {〈1, 𝑢〉, 〈2, 𝑣〉}) |
89 | 81, 88 | sylbi 216 |
. . . . . 6
⊢ (𝑤 ∈ 𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {〈1, 𝑢〉, 〈2, 𝑣〉}) |
90 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → 〈1, 𝑥〉 = 〈1, 𝑢〉) |
91 | 90 | preq1d 4675 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → {〈1, 𝑥〉, 〈2, 𝑦〉} = {〈1, 𝑢〉, 〈2, 𝑦〉}) |
92 | | opeq2 4805 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → 〈2, 𝑦〉 = 〈2, 𝑣〉) |
93 | 92 | preq2d 4676 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → {〈1, 𝑢〉, 〈2, 𝑦〉} = {〈1, 𝑢〉, 〈2, 𝑣〉}) |
94 | | prex 5355 |
. . . . . . . . 9
⊢ {〈1,
𝑢〉, 〈2, 𝑣〉} ∈
V |
95 | 91, 93, 1, 94 | ovmpo 7433 |
. . . . . . . 8
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = {〈1, 𝑢〉, 〈2, 𝑣〉}) |
96 | 95 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = {〈1, 𝑢〉, 〈2, 𝑣〉})) |
97 | 96 | 2rexbiia 3227 |
. . . . . 6
⊢
(∃𝑢 ∈
ℝ ∃𝑣 ∈
ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {〈1, 𝑢〉, 〈2, 𝑣〉}) |
98 | 89, 97 | sylibr 233 |
. . . . 5
⊢ (𝑤 ∈ 𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣)) |
99 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝐹‘〈𝑢, 𝑣〉)) |
100 | | df-ov 7278 |
. . . . . . . 8
⊢ (𝑢𝐹𝑣) = (𝐹‘〈𝑢, 𝑣〉) |
101 | 99, 100 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝑢𝐹𝑣)) |
102 | 101 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝑢𝐹𝑣))) |
103 | 102 | rexxp 5751 |
. . . . 5
⊢
(∃𝑧 ∈
(ℝ × ℝ)𝑤
= (𝐹‘𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣)) |
104 | 98, 103 | sylibr 233 |
. . . 4
⊢ (𝑤 ∈ 𝑅 → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹‘𝑧)) |
105 | 104 | rgen 3074 |
. . 3
⊢
∀𝑤 ∈
𝑅 ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹‘𝑧) |
106 | | dffo3 6978 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–onto→𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑤 ∈ 𝑅 ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹‘𝑧))) |
107 | 25, 105, 106 | mpbir2an 708 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–onto→𝑅 |
108 | | df-f1o 6440 |
. 2
⊢ (𝐹:(ℝ ×
ℝ)–1-1-onto→𝑅 ↔ (𝐹:(ℝ × ℝ)–1-1→𝑅 ∧ 𝐹:(ℝ × ℝ)–onto→𝑅)) |
109 | 72, 107, 108 | mpbir2an 708 |
1
⊢ 𝐹:(ℝ ×
ℝ)–1-1-onto→𝑅 |