Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpref1o Structured version   Visualization version   GIF version

Theorem rrx2xpref1o 46064
Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
rrx2xpref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
Assertion
Ref Expression
rrx2xpref1o 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rrx2xpref1o
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2xpref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
2 prex 5355 . . . . 5 {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ V
31, 2fnmpoi 7910 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7870 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6778 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 7278 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6eqtr4di 2796 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7863 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7864 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 opeq2 4805 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑧)⟩)
1110preq1d 4675 . . . . . . . . 9 (𝑥 = (1st𝑧) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩})
12 opeq2 4805 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑧)⟩)
1312preq2d 4676 . . . . . . . . 9 (𝑦 = (2nd𝑧) → {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
14 prex 5355 . . . . . . . . 9 {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ V
1511, 13, 1, 14ovmpo 7433 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
168, 9, 15syl2anc 584 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
177, 16eqtrd 2778 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
18 eqid 2738 . . . . . . . 8 {1, 2} = {1, 2}
19 rrx2xpreen.r . . . . . . . 8 𝑅 = (ℝ ↑m {1, 2})
2018, 19prelrrx2 46059 . . . . . . 7 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
218, 9, 20syl2anc 584 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
2217, 21eqeltrd 2839 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ 𝑅)
2322rgen 3074 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅
24 ffnfv 6992 . . . 4 (𝐹:(ℝ × ℝ)⟶𝑅 ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅))
253, 23, 24mpbir2an 708 . . 3 𝐹:(ℝ × ℝ)⟶𝑅
26 opex 5379 . . . . . . . 8 ⟨1, (1st𝑧)⟩ ∈ V
27 opex 5379 . . . . . . . 8 ⟨2, (2nd𝑧)⟩ ∈ V
28 opex 5379 . . . . . . . 8 ⟨1, (1st𝑤)⟩ ∈ V
29 opex 5379 . . . . . . . 8 ⟨2, (2nd𝑤)⟩ ∈ V
3026, 27, 28, 29preq12b 4781 . . . . . . 7 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ↔ ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)))
31 1ex 10971 . . . . . . . . . . . 12 1 ∈ V
32 fvex 6787 . . . . . . . . . . . 12 (1st𝑧) ∈ V
3331, 32opth 5391 . . . . . . . . . . 11 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (1 = 1 ∧ (1st𝑧) = (1st𝑤)))
3433simprbi 497 . . . . . . . . . 10 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ → (1st𝑧) = (1st𝑤))
35 2ex 12050 . . . . . . . . . . . 12 2 ∈ V
36 fvex 6787 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
3735, 36opth 5391 . . . . . . . . . . 11 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (2 = 2 ∧ (2nd𝑧) = (2nd𝑤)))
3837simprbi 497 . . . . . . . . . 10 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ → (2nd𝑧) = (2nd𝑤))
3934, 38anim12i 613 . . . . . . . . 9 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4039a1d 25 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4131, 32opth 5391 . . . . . . . . 9 (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (1 = 2 ∧ (1st𝑧) = (2nd𝑤)))
4235, 36opth 5391 . . . . . . . . 9 (⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (2 = 1 ∧ (2nd𝑧) = (1st𝑤)))
43 1ne2 12181 . . . . . . . . . . 11 1 ≠ 2
44 eqneqall 2954 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))))
4543, 44mpi 20 . . . . . . . . . 10 (1 = 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4645ad2antrr 723 . . . . . . . . 9 (((1 = 2 ∧ (1st𝑧) = (2nd𝑤)) ∧ (2 = 1 ∧ (2nd𝑧) = (1st𝑤))) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4741, 42, 46syl2anb 598 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4840, 47jaoi 854 . . . . . . 7 (((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4930, 48sylbi 216 . . . . . 6 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5049com12 32 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
51 1st2nd2 7870 . . . . . . . . 9 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
5251fveq2d 6778 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
53 df-ov 7278 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
5452, 53eqtr4di 2796 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤)𝐹(2nd𝑤)))
55 xp1st 7863 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
56 xp2nd 7864 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
57 opeq2 4805 . . . . . . . . . 10 (𝑥 = (1st𝑤) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑤)⟩)
5857preq1d 4675 . . . . . . . . 9 (𝑥 = (1st𝑤) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩})
59 opeq2 4805 . . . . . . . . . 10 (𝑦 = (2nd𝑤) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑤)⟩)
6059preq2d 4676 . . . . . . . . 9 (𝑦 = (2nd𝑤) → {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
61 prex 5355 . . . . . . . . 9 {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ∈ V
6258, 60, 1, 61ovmpo 7433 . . . . . . . 8 (((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6355, 56, 62syl2anc 584 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6454, 63eqtrd 2778 . . . . . 6 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6517, 64eqeqan12d 2752 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩}))
664, 51eqeqan12d 2752 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
6732, 36opth 5391 . . . . . 6 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
6866, 67bitrdi 287 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
6950, 65, 683imtr4d 294 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7069rgen2 3120 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
71 dff13 7128 . . 3 (𝐹:(ℝ × ℝ)–1-1𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7225, 70, 71mpbir2an 708 . 2 𝐹:(ℝ × ℝ)–1-1𝑅
7319eleq2i 2830 . . . . . . . 8 (𝑤𝑅𝑤 ∈ (ℝ ↑m {1, 2}))
74 reex 10962 . . . . . . . . 9 ℝ ∈ V
75 prex 5355 . . . . . . . . 9 {1, 2} ∈ V
7674, 75elmap 8659 . . . . . . . 8 (𝑤 ∈ (ℝ ↑m {1, 2}) ↔ 𝑤:{1, 2}⟶ℝ)
77 1re 10975 . . . . . . . . 9 1 ∈ ℝ
78 2re 12047 . . . . . . . . 9 2 ∈ ℝ
79 fpr2g 7087 . . . . . . . . 9 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})))
8077, 78, 79mp2an 689 . . . . . . . 8 (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8173, 76, 803bitri 297 . . . . . . 7 (𝑤𝑅 ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
82 opeq2 4805 . . . . . . . . . 10 (𝑢 = (𝑤‘1) → ⟨1, 𝑢⟩ = ⟨1, (𝑤‘1)⟩)
8382preq1d 4675 . . . . . . . . 9 (𝑢 = (𝑤‘1) → {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩})
8483eqeq2d 2749 . . . . . . . 8 (𝑢 = (𝑤‘1) → (𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩}))
85 opeq2 4805 . . . . . . . . . 10 (𝑣 = (𝑤‘2) → ⟨2, 𝑣⟩ = ⟨2, (𝑤‘2)⟩)
8685preq2d 4676 . . . . . . . . 9 (𝑣 = (𝑤‘2) → {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})
8786eqeq2d 2749 . . . . . . . 8 (𝑣 = (𝑤‘2) → (𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8884, 87rspc2ev 3572 . . . . . . 7 (((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
8981, 88sylbi 216 . . . . . 6 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
90 opeq2 4805 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨1, 𝑥⟩ = ⟨1, 𝑢⟩)
9190preq1d 4675 . . . . . . . . 9 (𝑥 = 𝑢 → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑦⟩})
92 opeq2 4805 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨2, 𝑦⟩ = ⟨2, 𝑣⟩)
9392preq2d 4676 . . . . . . . . 9 (𝑦 = 𝑣 → {⟨1, 𝑢⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
94 prex 5355 . . . . . . . . 9 {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ∈ V
9591, 93, 1, 94ovmpo 7433 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9695eqeq2d 2749 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩}))
97962rexbiia 3227 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9889, 97sylibr 233 . . . . 5 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
99 fveq2 6774 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
100 df-ov 7278 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
10199, 100eqtr4di 2796 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
102101eqeq2d 2749 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
103102rexxp 5751 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
10498, 103sylibr 233 . . . 4 (𝑤𝑅 → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
105104rgen 3074 . . 3 𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
106 dffo3 6978 . . 3 (𝐹:(ℝ × ℝ)–onto𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
10725, 105, 106mpbir2an 708 . 2 𝐹:(ℝ × ℝ)–onto𝑅
108 df-f1o 6440 . 2 (𝐹:(ℝ × ℝ)–1-1-onto𝑅 ↔ (𝐹:(ℝ × ℝ)–1-1𝑅𝐹:(ℝ × ℝ)–onto𝑅))
10972, 107, 108mpbir2an 708 1 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {cpr 4563  cop 4567   × cxp 5587   Fn wfn 6428  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  m cmap 8615  cr 10870  1c1 10872  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-2 12036
This theorem is referenced by:  rrx2xpreen  46065  rrx2plordisom  46069
  Copyright terms: Public domain W3C validator