Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpref1o Structured version   Visualization version   GIF version

Theorem rrx2xpref1o 48713
Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
rrx2xpref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
Assertion
Ref Expression
rrx2xpref1o 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rrx2xpref1o
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2xpref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
2 prex 5376 . . . . 5 {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ V
31, 2fnmpoi 8005 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7963 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6826 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 7352 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6eqtr4di 2782 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7956 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7957 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 opeq2 4825 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑧)⟩)
1110preq1d 4691 . . . . . . . . 9 (𝑥 = (1st𝑧) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩})
12 opeq2 4825 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑧)⟩)
1312preq2d 4692 . . . . . . . . 9 (𝑦 = (2nd𝑧) → {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
14 prex 5376 . . . . . . . . 9 {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ V
1511, 13, 1, 14ovmpo 7509 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
168, 9, 15syl2anc 584 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
177, 16eqtrd 2764 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
18 eqid 2729 . . . . . . . 8 {1, 2} = {1, 2}
19 rrx2xpreen.r . . . . . . . 8 𝑅 = (ℝ ↑m {1, 2})
2018, 19prelrrx2 48708 . . . . . . 7 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
218, 9, 20syl2anc 584 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
2217, 21eqeltrd 2828 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ 𝑅)
2322rgen 3046 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅
24 ffnfv 7053 . . . 4 (𝐹:(ℝ × ℝ)⟶𝑅 ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅))
253, 23, 24mpbir2an 711 . . 3 𝐹:(ℝ × ℝ)⟶𝑅
26 opex 5407 . . . . . . . 8 ⟨1, (1st𝑧)⟩ ∈ V
27 opex 5407 . . . . . . . 8 ⟨2, (2nd𝑧)⟩ ∈ V
28 opex 5407 . . . . . . . 8 ⟨1, (1st𝑤)⟩ ∈ V
29 opex 5407 . . . . . . . 8 ⟨2, (2nd𝑤)⟩ ∈ V
3026, 27, 28, 29preq12b 4801 . . . . . . 7 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ↔ ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)))
31 1ex 11111 . . . . . . . . . . . 12 1 ∈ V
32 fvex 6835 . . . . . . . . . . . 12 (1st𝑧) ∈ V
3331, 32opth 5419 . . . . . . . . . . 11 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (1 = 1 ∧ (1st𝑧) = (1st𝑤)))
3433simprbi 496 . . . . . . . . . 10 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ → (1st𝑧) = (1st𝑤))
35 2ex 12205 . . . . . . . . . . . 12 2 ∈ V
36 fvex 6835 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
3735, 36opth 5419 . . . . . . . . . . 11 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (2 = 2 ∧ (2nd𝑧) = (2nd𝑤)))
3837simprbi 496 . . . . . . . . . 10 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ → (2nd𝑧) = (2nd𝑤))
3934, 38anim12i 613 . . . . . . . . 9 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4039a1d 25 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4131, 32opth 5419 . . . . . . . . 9 (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (1 = 2 ∧ (1st𝑧) = (2nd𝑤)))
4235, 36opth 5419 . . . . . . . . 9 (⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (2 = 1 ∧ (2nd𝑧) = (1st𝑤)))
43 1ne2 12331 . . . . . . . . . . 11 1 ≠ 2
44 eqneqall 2936 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))))
4543, 44mpi 20 . . . . . . . . . 10 (1 = 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4645ad2antrr 726 . . . . . . . . 9 (((1 = 2 ∧ (1st𝑧) = (2nd𝑤)) ∧ (2 = 1 ∧ (2nd𝑧) = (1st𝑤))) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4741, 42, 46syl2anb 598 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4840, 47jaoi 857 . . . . . . 7 (((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4930, 48sylbi 217 . . . . . 6 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5049com12 32 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
51 1st2nd2 7963 . . . . . . . . 9 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
5251fveq2d 6826 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
53 df-ov 7352 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
5452, 53eqtr4di 2782 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤)𝐹(2nd𝑤)))
55 xp1st 7956 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
56 xp2nd 7957 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
57 opeq2 4825 . . . . . . . . . 10 (𝑥 = (1st𝑤) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑤)⟩)
5857preq1d 4691 . . . . . . . . 9 (𝑥 = (1st𝑤) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩})
59 opeq2 4825 . . . . . . . . . 10 (𝑦 = (2nd𝑤) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑤)⟩)
6059preq2d 4692 . . . . . . . . 9 (𝑦 = (2nd𝑤) → {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
61 prex 5376 . . . . . . . . 9 {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ∈ V
6258, 60, 1, 61ovmpo 7509 . . . . . . . 8 (((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6355, 56, 62syl2anc 584 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6454, 63eqtrd 2764 . . . . . 6 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6517, 64eqeqan12d 2743 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩}))
664, 51eqeqan12d 2743 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
6732, 36opth 5419 . . . . . 6 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
6866, 67bitrdi 287 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
6950, 65, 683imtr4d 294 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7069rgen2 3169 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
71 dff13 7191 . . 3 (𝐹:(ℝ × ℝ)–1-1𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7225, 70, 71mpbir2an 711 . 2 𝐹:(ℝ × ℝ)–1-1𝑅
7319eleq2i 2820 . . . . . . . 8 (𝑤𝑅𝑤 ∈ (ℝ ↑m {1, 2}))
74 reex 11100 . . . . . . . . 9 ℝ ∈ V
75 prex 5376 . . . . . . . . 9 {1, 2} ∈ V
7674, 75elmap 8798 . . . . . . . 8 (𝑤 ∈ (ℝ ↑m {1, 2}) ↔ 𝑤:{1, 2}⟶ℝ)
77 1re 11115 . . . . . . . . 9 1 ∈ ℝ
78 2re 12202 . . . . . . . . 9 2 ∈ ℝ
79 fpr2g 7147 . . . . . . . . 9 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})))
8077, 78, 79mp2an 692 . . . . . . . 8 (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8173, 76, 803bitri 297 . . . . . . 7 (𝑤𝑅 ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
82 opeq2 4825 . . . . . . . . . 10 (𝑢 = (𝑤‘1) → ⟨1, 𝑢⟩ = ⟨1, (𝑤‘1)⟩)
8382preq1d 4691 . . . . . . . . 9 (𝑢 = (𝑤‘1) → {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩})
8483eqeq2d 2740 . . . . . . . 8 (𝑢 = (𝑤‘1) → (𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩}))
85 opeq2 4825 . . . . . . . . . 10 (𝑣 = (𝑤‘2) → ⟨2, 𝑣⟩ = ⟨2, (𝑤‘2)⟩)
8685preq2d 4692 . . . . . . . . 9 (𝑣 = (𝑤‘2) → {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})
8786eqeq2d 2740 . . . . . . . 8 (𝑣 = (𝑤‘2) → (𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8884, 87rspc2ev 3590 . . . . . . 7 (((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
8981, 88sylbi 217 . . . . . 6 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
90 opeq2 4825 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨1, 𝑥⟩ = ⟨1, 𝑢⟩)
9190preq1d 4691 . . . . . . . . 9 (𝑥 = 𝑢 → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑦⟩})
92 opeq2 4825 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨2, 𝑦⟩ = ⟨2, 𝑣⟩)
9392preq2d 4692 . . . . . . . . 9 (𝑦 = 𝑣 → {⟨1, 𝑢⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
94 prex 5376 . . . . . . . . 9 {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ∈ V
9591, 93, 1, 94ovmpo 7509 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9695eqeq2d 2740 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩}))
97962rexbiia 3190 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9889, 97sylibr 234 . . . . 5 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
99 fveq2 6822 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
100 df-ov 7352 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
10199, 100eqtr4di 2782 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
102101eqeq2d 2740 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
103102rexxp 5785 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
10498, 103sylibr 234 . . . 4 (𝑤𝑅 → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
105104rgen 3046 . . 3 𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
106 dffo3 7036 . . 3 (𝐹:(ℝ × ℝ)–onto𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
10725, 105, 106mpbir2an 711 . 2 𝐹:(ℝ × ℝ)–onto𝑅
108 df-f1o 6489 . 2 (𝐹:(ℝ × ℝ)–1-1-onto𝑅 ↔ (𝐹:(ℝ × ℝ)–1-1𝑅𝐹:(ℝ × ℝ)–onto𝑅))
10972, 107, 108mpbir2an 711 1 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {cpr 4579  cop 4583   × cxp 5617   Fn wfn 6477  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  m cmap 8753  cr 11008  1c1 11010  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-2 12191
This theorem is referenced by:  rrx2xpreen  48714  rrx2plordisom  48718
  Copyright terms: Public domain W3C validator