Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2xpref1o Structured version   Visualization version   GIF version

Theorem rrx2xpref1o 48829
Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2xpreen.r 𝑅 = (ℝ ↑m {1, 2})
rrx2xpref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
Assertion
Ref Expression
rrx2xpref1o 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rrx2xpref1o
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2xpref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
2 prex 5373 . . . . 5 {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ V
31, 2fnmpoi 8002 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7960 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6826 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 7349 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6eqtr4di 2784 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7953 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7954 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 opeq2 4823 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑧)⟩)
1110preq1d 4689 . . . . . . . . 9 (𝑥 = (1st𝑧) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩})
12 opeq2 4823 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑧)⟩)
1312preq2d 4690 . . . . . . . . 9 (𝑦 = (2nd𝑧) → {⟨1, (1st𝑧)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
14 prex 5373 . . . . . . . . 9 {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ V
1511, 13, 1, 14ovmpo 7506 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
168, 9, 15syl2anc 584 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
177, 16eqtrd 2766 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩})
18 eqid 2731 . . . . . . . 8 {1, 2} = {1, 2}
19 rrx2xpreen.r . . . . . . . 8 𝑅 = (ℝ ↑m {1, 2})
2018, 19prelrrx2 48824 . . . . . . 7 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
218, 9, 20syl2anc 584 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} ∈ 𝑅)
2217, 21eqeltrd 2831 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ 𝑅)
2322rgen 3049 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅
24 ffnfv 7052 . . . 4 (𝐹:(ℝ × ℝ)⟶𝑅 ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ 𝑅))
253, 23, 24mpbir2an 711 . . 3 𝐹:(ℝ × ℝ)⟶𝑅
26 opex 5402 . . . . . . . 8 ⟨1, (1st𝑧)⟩ ∈ V
27 opex 5402 . . . . . . . 8 ⟨2, (2nd𝑧)⟩ ∈ V
28 opex 5402 . . . . . . . 8 ⟨1, (1st𝑤)⟩ ∈ V
29 opex 5402 . . . . . . . 8 ⟨2, (2nd𝑤)⟩ ∈ V
3026, 27, 28, 29preq12b 4799 . . . . . . 7 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ↔ ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)))
31 1ex 11108 . . . . . . . . . . . 12 1 ∈ V
32 fvex 6835 . . . . . . . . . . . 12 (1st𝑧) ∈ V
3331, 32opth 5414 . . . . . . . . . . 11 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (1 = 1 ∧ (1st𝑧) = (1st𝑤)))
3433simprbi 496 . . . . . . . . . 10 (⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ → (1st𝑧) = (1st𝑤))
35 2ex 12202 . . . . . . . . . . . 12 2 ∈ V
36 fvex 6835 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
3735, 36opth 5414 . . . . . . . . . . 11 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (2 = 2 ∧ (2nd𝑧) = (2nd𝑤)))
3837simprbi 496 . . . . . . . . . 10 (⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩ → (2nd𝑧) = (2nd𝑤))
3934, 38anim12i 613 . . . . . . . . 9 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4039a1d 25 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4131, 32opth 5414 . . . . . . . . 9 (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ↔ (1 = 2 ∧ (1st𝑧) = (2nd𝑤)))
4235, 36opth 5414 . . . . . . . . 9 (⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩ ↔ (2 = 1 ∧ (2nd𝑧) = (1st𝑤)))
43 1ne2 12328 . . . . . . . . . . 11 1 ≠ 2
44 eqneqall 2939 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))))
4543, 44mpi 20 . . . . . . . . . 10 (1 = 2 → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4645ad2antrr 726 . . . . . . . . 9 (((1 = 2 ∧ (1st𝑧) = (2nd𝑤)) ∧ (2 = 1 ∧ (2nd𝑧) = (1st𝑤))) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4741, 42, 46syl2anb 598 . . . . . . . 8 ((⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4840, 47jaoi 857 . . . . . . 7 (((⟨1, (1st𝑧)⟩ = ⟨1, (1st𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨2, (2nd𝑤)⟩) ∨ (⟨1, (1st𝑧)⟩ = ⟨2, (2nd𝑤)⟩ ∧ ⟨2, (2nd𝑧)⟩ = ⟨1, (1st𝑤)⟩)) → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4930, 48sylbi 217 . . . . . 6 ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5049com12 32 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ({⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} → ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
51 1st2nd2 7960 . . . . . . . . 9 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
5251fveq2d 6826 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
53 df-ov 7349 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
5452, 53eqtr4di 2784 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤)𝐹(2nd𝑤)))
55 xp1st 7953 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
56 xp2nd 7954 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
57 opeq2 4823 . . . . . . . . . 10 (𝑥 = (1st𝑤) → ⟨1, 𝑥⟩ = ⟨1, (1st𝑤)⟩)
5857preq1d 4689 . . . . . . . . 9 (𝑥 = (1st𝑤) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩})
59 opeq2 4823 . . . . . . . . . 10 (𝑦 = (2nd𝑤) → ⟨2, 𝑦⟩ = ⟨2, (2nd𝑤)⟩)
6059preq2d 4690 . . . . . . . . 9 (𝑦 = (2nd𝑤) → {⟨1, (1st𝑤)⟩, ⟨2, 𝑦⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
61 prex 5373 . . . . . . . . 9 {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩} ∈ V
6258, 60, 1, 61ovmpo 7506 . . . . . . . 8 (((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6355, 56, 62syl2anc 584 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6454, 63eqtrd 2766 . . . . . 6 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩})
6517, 64eqeqan12d 2745 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨1, (1st𝑧)⟩, ⟨2, (2nd𝑧)⟩} = {⟨1, (1st𝑤)⟩, ⟨2, (2nd𝑤)⟩}))
664, 51eqeqan12d 2745 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
6732, 36opth 5414 . . . . . 6 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
6866, 67bitrdi 287 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
6950, 65, 683imtr4d 294 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7069rgen2 3172 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
71 dff13 7188 . . 3 (𝐹:(ℝ × ℝ)–1-1𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7225, 70, 71mpbir2an 711 . 2 𝐹:(ℝ × ℝ)–1-1𝑅
7319eleq2i 2823 . . . . . . . 8 (𝑤𝑅𝑤 ∈ (ℝ ↑m {1, 2}))
74 reex 11097 . . . . . . . . 9 ℝ ∈ V
75 prex 5373 . . . . . . . . 9 {1, 2} ∈ V
7674, 75elmap 8795 . . . . . . . 8 (𝑤 ∈ (ℝ ↑m {1, 2}) ↔ 𝑤:{1, 2}⟶ℝ)
77 1re 11112 . . . . . . . . 9 1 ∈ ℝ
78 2re 12199 . . . . . . . . 9 2 ∈ ℝ
79 fpr2g 7145 . . . . . . . . 9 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})))
8077, 78, 79mp2an 692 . . . . . . . 8 (𝑤:{1, 2}⟶ℝ ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8173, 76, 803bitri 297 . . . . . . 7 (𝑤𝑅 ↔ ((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
82 opeq2 4823 . . . . . . . . . 10 (𝑢 = (𝑤‘1) → ⟨1, 𝑢⟩ = ⟨1, (𝑤‘1)⟩)
8382preq1d 4689 . . . . . . . . 9 (𝑢 = (𝑤‘1) → {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩})
8483eqeq2d 2742 . . . . . . . 8 (𝑢 = (𝑤‘1) → (𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩}))
85 opeq2 4823 . . . . . . . . . 10 (𝑣 = (𝑤‘2) → ⟨2, 𝑣⟩ = ⟨2, (𝑤‘2)⟩)
8685preq2d 4690 . . . . . . . . 9 (𝑣 = (𝑤‘2) → {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩})
8786eqeq2d 2742 . . . . . . . 8 (𝑣 = (𝑤‘2) → (𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, 𝑣⟩} ↔ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}))
8884, 87rspc2ev 3585 . . . . . . 7 (((𝑤‘1) ∈ ℝ ∧ (𝑤‘2) ∈ ℝ ∧ 𝑤 = {⟨1, (𝑤‘1)⟩, ⟨2, (𝑤‘2)⟩}) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
8981, 88sylbi 217 . . . . . 6 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
90 opeq2 4823 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨1, 𝑥⟩ = ⟨1, 𝑢⟩)
9190preq1d 4689 . . . . . . . . 9 (𝑥 = 𝑢 → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑦⟩})
92 opeq2 4823 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨2, 𝑦⟩ = ⟨2, 𝑣⟩)
9392preq2d 4690 . . . . . . . . 9 (𝑦 = 𝑣 → {⟨1, 𝑢⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
94 prex 5373 . . . . . . . . 9 {⟨1, 𝑢⟩, ⟨2, 𝑣⟩} ∈ V
9591, 93, 1, 94ovmpo 7506 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9695eqeq2d 2742 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩}))
97962rexbiia 3193 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = {⟨1, 𝑢⟩, ⟨2, 𝑣⟩})
9889, 97sylibr 234 . . . . 5 (𝑤𝑅 → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
99 fveq2 6822 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
100 df-ov 7349 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
10199, 100eqtr4di 2784 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
102101eqeq2d 2742 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
103102rexxp 5781 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
10498, 103sylibr 234 . . . 4 (𝑤𝑅 → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
105104rgen 3049 . . 3 𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
106 dffo3 7035 . . 3 (𝐹:(ℝ × ℝ)–onto𝑅 ↔ (𝐹:(ℝ × ℝ)⟶𝑅 ∧ ∀𝑤𝑅𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
10725, 105, 106mpbir2an 711 . 2 𝐹:(ℝ × ℝ)–onto𝑅
108 df-f1o 6488 . 2 (𝐹:(ℝ × ℝ)–1-1-onto𝑅 ↔ (𝐹:(ℝ × ℝ)–1-1𝑅𝐹:(ℝ × ℝ)–onto𝑅))
10972, 107, 108mpbir2an 711 1 𝐹:(ℝ × ℝ)–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {cpr 4575  cop 4579   × cxp 5612   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  cr 11005  1c1 11007  2c2 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-2 12188
This theorem is referenced by:  rrx2xpreen  48830  rrx2plordisom  48834
  Copyright terms: Public domain W3C validator