Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2uasbanh Structured version   Visualization version   GIF version

Theorem 2uasbanh 42181
Description: Distribute the unabbreviated form of proper substitution in and out of a conjunction. 2uasbanh 42181 is derived from 2uasbanhVD 42531. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
2uasbanh.1 (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
Assertion
Ref Expression
2uasbanh (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem 2uasbanh
StepHypRef Expression
1 simpl 483 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → (𝑥 = 𝑢𝑦 = 𝑣))
2 simprl 768 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → 𝜑)
31, 2jca 512 . . . 4 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
432eximi 1838 . . 3 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
5 simprr 770 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → 𝜓)
61, 5jca 512 . . . 4 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
762eximi 1838 . . 3 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
84, 7jca 512 . 2 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
9 2uasbanh.1 . . 3 (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
109simplbi 498 . . . . . 6 (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
11 simpl 483 . . . . . . . . . 10 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
12112eximi 1838 . . . . . . . . 9 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
1310, 12syl 17 . . . . . . . 8 (𝜒 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
14 ax6e2ndeq 42179 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
1513, 14sylibr 233 . . . . . . 7 (𝜒 → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
16 2sb5nd 42180 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
1715, 16syl 17 . . . . . 6 (𝜒 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
1810, 17mpbird 256 . . . . 5 (𝜒 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
199simprbi 497 . . . . . 6 (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
20 2sb5nd 42180 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2115, 20syl 17 . . . . . 6 (𝜒 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2219, 21mpbird 256 . . . . 5 (𝜒 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)
23 sban 2083 . . . . . . 7 ([𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
2423sbbii 2079 . . . . . 6 ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
25 sban 2083 . . . . . 6 ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
2624, 25bitri 274 . . . . 5 ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
2718, 22, 26sylanbrc 583 . . . 4 (𝜒 → [𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓))
28 2sb5nd 42180 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))))
2915, 28syl 17 . . . 4 (𝜒 → ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))))
3027, 29mpbid 231 . . 3 (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))
319, 30sylbir 234 . 2 ((∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))
328, 31impbii 208 1 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wal 1537  wex 1782  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434
This theorem is referenced by:  2uasban  42182
  Copyright terms: Public domain W3C validator