Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndeq Structured version   Visualization version   GIF version

Theorem ax6e2ndeq 41265
Description: "At least two sets exist" expressed in the form of dtru 5236 is logically equivalent to the same expressed in a form similar to ax6e 2390 if dtru 5236 is false implies 𝑢 = 𝑣. ax6e2ndeq 41265 is derived from ax6e2ndeqVD 41615. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6e2ndeq ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣

Proof of Theorem ax6e2ndeq
StepHypRef Expression
1 ax6e2nd 41264 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 ax6e2eq 41263 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31a1d 25 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42, 3pm2.61i 185 . . 3 (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
51, 4jaoi 854 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
6 olc 865 . . . 4 (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
76a1d 25 . . 3 (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣)))
8 excom 2166 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
9 neeq1 3049 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥𝑣𝑢𝑣))
109biimprcd 253 . . . . . . . . . . . 12 (𝑢𝑣 → (𝑥 = 𝑢𝑥𝑣))
1110adantrd 495 . . . . . . . . . . 11 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥𝑣))
12 simpr 488 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
1312a1i 11 . . . . . . . . . . 11 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣))
14 neeq2 3050 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑥𝑦𝑥𝑣))
1514biimprcd 253 . . . . . . . . . . 11 (𝑥𝑣 → (𝑦 = 𝑣𝑥𝑦))
1611, 13, 15syl6c 70 . . . . . . . . . 10 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥𝑦))
17 sp 2180 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
1817necon3ai 3012 . . . . . . . . . 10 (𝑥𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
1916, 18syl6 35 . . . . . . . . 9 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
2019eximdv 1918 . . . . . . . 8 (𝑢𝑣 → (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦))
21 nfnae 2445 . . . . . . . . 9 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
222119.9 2203 . . . . . . . 8 (∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2320, 22syl6ib 254 . . . . . . 7 (𝑢𝑣 → (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
2423eximdv 1918 . . . . . 6 (𝑢𝑣 → (∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))
258, 24syl5bi 245 . . . . 5 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))
26 nfnae 2445 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
272619.9 2203 . . . . 5 (∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2825, 27syl6ib 254 . . . 4 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
29 orc 864 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
3028, 29syl6 35 . . 3 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣)))
317, 30pm2.61ine 3070 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
325, 31impbii 212 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wex 1781  wne 2987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-v 3443
This theorem is referenced by:  2sb5nd  41266  2uasbanh  41267  2sb5ndVD  41616  2uasbanhVD  41617  2sb5ndALT  41638
  Copyright terms: Public domain W3C validator