Proof of Theorem ax6e2ndeq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ax6e2nd 44583 | . . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | 
| 2 |  | ax6e2eq 44582 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) | 
| 3 | 1 | a1d 25 | . . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) | 
| 4 | 2, 3 | pm2.61i 182 | . . 3
⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | 
| 5 | 1, 4 | jaoi 857 | . 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | 
| 6 |  | olc 868 | . . . 4
⊢ (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) | 
| 7 | 6 | a1d 25 | . . 3
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) | 
| 8 |  | excom 2161 | . . . . . 6
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | 
| 9 |  | neeq1 3002 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥 ≠ 𝑣 ↔ 𝑢 ≠ 𝑣)) | 
| 10 | 9 | biimprcd 250 | . . . . . . . . . . . 12
⊢ (𝑢 ≠ 𝑣 → (𝑥 = 𝑢 → 𝑥 ≠ 𝑣)) | 
| 11 | 10 | adantrd 491 | . . . . . . . . . . 11
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 ≠ 𝑣)) | 
| 12 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) | 
| 13 | 12 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣)) | 
| 14 |  | neeq2 3003 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣)) | 
| 15 | 14 | biimprcd 250 | . . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑣 → (𝑦 = 𝑣 → 𝑥 ≠ 𝑦)) | 
| 16 | 11, 13, 15 | syl6c 70 | . . . . . . . . . 10
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 ≠ 𝑦)) | 
| 17 |  | sp 2182 | . . . . . . . . . . 11
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 18 | 17 | necon3ai 2964 | . . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) | 
| 19 | 16, 18 | syl6 35 | . . . . . . . . 9
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 20 | 19 | eximdv 1916 | . . . . . . . 8
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 21 |  | nfnae 2438 | . . . . . . . . 9
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 | 
| 22 | 21 | 19.9 2204 | . . . . . . . 8
⊢
(∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | 
| 23 | 20, 22 | imbitrdi 251 | . . . . . . 7
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 24 | 23 | eximdv 1916 | . . . . . 6
⊢ (𝑢 ≠ 𝑣 → (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 25 | 8, 24 | biimtrid 242 | . . . . 5
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 26 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 | 
| 27 | 26 | 19.9 2204 | . . . . 5
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | 
| 28 | 25, 27 | imbitrdi 251 | . . . 4
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) | 
| 29 |  | orc 867 | . . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) | 
| 30 | 28, 29 | syl6 35 | . . 3
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) | 
| 31 | 7, 30 | pm2.61ine 3024 | . 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) | 
| 32 | 5, 31 | impbii 209 | 1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |