Proof of Theorem ax6e2ndeq
Step | Hyp | Ref
| Expression |
1 | | ax6e2nd 41637 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
2 | | ax6e2eq 41636 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
3 | 1 | a1d 25 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
4 | 2, 3 | pm2.61i 185 |
. . 3
⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
5 | 1, 4 | jaoi 854 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
6 | | olc 865 |
. . . 4
⊢ (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
7 | 6 | a1d 25 |
. . 3
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
8 | | excom 2166 |
. . . . . 6
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
9 | | neeq1 3013 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥 ≠ 𝑣 ↔ 𝑢 ≠ 𝑣)) |
10 | 9 | biimprcd 253 |
. . . . . . . . . . . 12
⊢ (𝑢 ≠ 𝑣 → (𝑥 = 𝑢 → 𝑥 ≠ 𝑣)) |
11 | 10 | adantrd 495 |
. . . . . . . . . . 11
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 ≠ 𝑣)) |
12 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) |
13 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣)) |
14 | | neeq2 3014 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣)) |
15 | 14 | biimprcd 253 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑣 → (𝑦 = 𝑣 → 𝑥 ≠ 𝑦)) |
16 | 11, 13, 15 | syl6c 70 |
. . . . . . . . . 10
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 ≠ 𝑦)) |
17 | | sp 2180 |
. . . . . . . . . . 11
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
18 | 17 | necon3ai 2976 |
. . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
19 | 16, 18 | syl6 35 |
. . . . . . . . 9
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
20 | 19 | eximdv 1918 |
. . . . . . . 8
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) |
21 | | nfnae 2445 |
. . . . . . . . 9
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
22 | 21 | 19.9 2203 |
. . . . . . . 8
⊢
(∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
23 | 20, 22 | syl6ib 254 |
. . . . . . 7
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
24 | 23 | eximdv 1918 |
. . . . . 6
⊢ (𝑢 ≠ 𝑣 → (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
25 | 8, 24 | syl5bi 245 |
. . . . 5
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
26 | | nfnae 2445 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
27 | 26 | 19.9 2203 |
. . . . 5
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
28 | 25, 27 | syl6ib 254 |
. . . 4
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
29 | | orc 864 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
30 | 28, 29 | syl6 35 |
. . 3
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
31 | 7, 30 | pm2.61ine 3034 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
32 | 5, 31 | impbii 212 |
1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |