Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndeq Structured version   Visualization version   GIF version

Theorem ax6e2ndeq 42068
Description: "At least two sets exist" expressed in the form of dtru 5288 is logically equivalent to the same expressed in a form similar to ax6e 2383 if dtru 5288 is false implies 𝑢 = 𝑣. ax6e2ndeq 42068 is derived from ax6e2ndeqVD 42418. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6e2ndeq ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣

Proof of Theorem ax6e2ndeq
StepHypRef Expression
1 ax6e2nd 42067 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 ax6e2eq 42066 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31a1d 25 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42, 3pm2.61i 182 . . 3 (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
51, 4jaoi 853 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
6 olc 864 . . . 4 (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
76a1d 25 . . 3 (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣)))
8 excom 2164 . . . . . 6 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
9 neeq1 3005 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥𝑣𝑢𝑣))
109biimprcd 249 . . . . . . . . . . . 12 (𝑢𝑣 → (𝑥 = 𝑢𝑥𝑣))
1110adantrd 491 . . . . . . . . . . 11 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥𝑣))
12 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
1312a1i 11 . . . . . . . . . . 11 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣))
14 neeq2 3006 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑥𝑦𝑥𝑣))
1514biimprcd 249 . . . . . . . . . . 11 (𝑥𝑣 → (𝑦 = 𝑣𝑥𝑦))
1611, 13, 15syl6c 70 . . . . . . . . . 10 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥𝑦))
17 sp 2178 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
1817necon3ai 2967 . . . . . . . . . 10 (𝑥𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
1916, 18syl6 35 . . . . . . . . 9 (𝑢𝑣 → ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
2019eximdv 1921 . . . . . . . 8 (𝑢𝑣 → (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦))
21 nfnae 2434 . . . . . . . . 9 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
222119.9 2201 . . . . . . . 8 (∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2320, 22syl6ib 250 . . . . . . 7 (𝑢𝑣 → (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
2423eximdv 1921 . . . . . 6 (𝑢𝑣 → (∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))
258, 24syl5bi 241 . . . . 5 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))
26 nfnae 2434 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
272619.9 2201 . . . . 5 (∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2825, 27syl6ib 250 . . . 4 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))
29 orc 863 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
3028, 29syl6 35 . . 3 (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣)))
317, 30pm2.61ine 3027 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣))
325, 31impbii 208 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wex 1783  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424
This theorem is referenced by:  2sb5nd  42069  2uasbanh  42070  2sb5ndVD  42419  2uasbanhVD  42420  2sb5ndALT  42441
  Copyright terms: Public domain W3C validator