MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2l Structured version   Visualization version   GIF version

Theorem 3adant2l 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2l ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axdc3lem4  10467  modexp  14256  lmmbr2  25211  ax5seglem1  28907  ax5seglem2  28908  nvaddsub4  30638  pl1cn  33986  athgt  39475  ltrncoelN  40162  ltrncoat  40163  trlcoabs  40740  tendoplcl2  40797  tendopltp  40799  dih1dimatlem0  41347  pellex  42858  fourierdlem42  46178
  Copyright terms: Public domain W3C validator