Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant2l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2l | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1163 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: axdc3lem4 10209 modexp 13953 lmmbr2 24423 ax5seglem1 27296 ax5seglem2 27297 nvaddsub4 29019 pl1cn 31905 athgt 37470 ltrncoelN 38157 ltrncoat 38158 trlcoabs 38735 tendoplcl2 38792 tendopltp 38794 dih1dimatlem0 39342 pellex 40657 fourierdlem42 43690 |
Copyright terms: Public domain | W3C validator |