MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2l Structured version   Visualization version   GIF version

Theorem 3adant2l 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2l ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1163 1 ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axdc3lem4  10491  modexp  14274  lmmbr2  25307  ax5seglem1  28958  ax5seglem2  28959  nvaddsub4  30686  pl1cn  33916  athgt  39439  ltrncoelN  40126  ltrncoat  40127  trlcoabs  40704  tendoplcl2  40761  tendopltp  40763  dih1dimatlem0  41311  pellex  42823  fourierdlem42  46105
  Copyright terms: Public domain W3C validator