| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant2l | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant2l | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: axdc3lem4 10351 modexp 14147 lmmbr2 25187 ax5seglem1 28908 ax5seglem2 28909 nvaddsub4 30639 pl1cn 33989 athgt 39576 ltrncoelN 40263 ltrncoat 40264 trlcoabs 40841 tendoplcl2 40898 tendopltp 40900 dih1dimatlem0 41448 pellex 42953 fourierdlem42 46272 |
| Copyright terms: Public domain | W3C validator |