MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2l Structured version   Visualization version   GIF version

Theorem 3adant2l 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2l ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axdc3lem4  10413  modexp  14210  lmmbr2  25166  ax5seglem1  28862  ax5seglem2  28863  nvaddsub4  30593  pl1cn  33952  athgt  39457  ltrncoelN  40144  ltrncoat  40145  trlcoabs  40722  tendoplcl2  40779  tendopltp  40781  dih1dimatlem0  41329  pellex  42830  fourierdlem42  46154
  Copyright terms: Public domain W3C validator