MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2l Structured version   Visualization version   GIF version

Theorem 3adant2l 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2l ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  axdc3lem4  10344  modexp  14145  lmmbr2  25187  ax5seglem1  28907  ax5seglem2  28908  nvaddsub4  30635  pl1cn  33966  athgt  39501  ltrncoelN  40188  ltrncoat  40189  trlcoabs  40766  tendoplcl2  40823  tendopltp  40825  dih1dimatlem0  41373  pellex  42874  fourierdlem42  46193
  Copyright terms: Public domain W3C validator