Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   GIF version

Theorem tendopltp 40747
Description: Trace-preserving property of endomorphism sum operation 𝑃, based on Theorems trlco 40694. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 40694) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopltp.l = (le‘𝐾)
tendopltp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopltp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝐾) = (Base‘𝐾)
2 tendopltp.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
43hllatd 39330 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
5 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 tendopl.h . . . 4 𝐻 = (LHyp‘𝐾)
7 tendopl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendopl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendopl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
106, 7, 8, 9tendoplcl2 40745 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
11 tendopltp.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
121, 6, 7, 11trlcl 40131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
135, 10, 12syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
146, 7, 8tendocl 40734 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
15143adant2r 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
161, 6, 7, 11trlcl 40131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
175, 15, 16syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
186, 7, 8tendocl 40734 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
19183adant2l 1179 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
201, 6, 7, 11trlcl 40131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
215, 19, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
22 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
231, 22latjcl 18374 . . 3 ((𝐾 ∈ Lat ∧ (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾)) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
244, 17, 21, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
25 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
261, 6, 7, 11trlcl 40131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
275, 25, 26syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
28 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑈𝐸)
29 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
309, 7tendopl2 40744 . . . . 5 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3128, 29, 25, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3231fveq2d 6844 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) = (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))))
332, 22, 6, 7, 11trlco 40694 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
345, 15, 19, 33syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
3532, 34eqbrtrd 5124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
362, 6, 7, 11, 8tendotp 40728 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
37363adant2r 1180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
382, 6, 7, 11, 8tendotp 40728 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
39383adant2l 1179 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
401, 2, 22latjle12 18385 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾))) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
414, 17, 21, 27, 40syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
4237, 39, 41mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹))
431, 2, 4, 13, 24, 27, 35, 42lattrd 18381 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  lecple 17203  joincjn 18248  Latclat 18366  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  TEndoctendo 40719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tendo 40722
This theorem is referenced by:  tendoplcl  40748
  Copyright terms: Public domain W3C validator