Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   GIF version

Theorem tendopltp 36856
Description: Trace-preserving property of endomorphism sum operation 𝑃, based on theorem trlco 36803. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 36803) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopltp.l = (le‘𝐾)
tendopltp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopltp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2826 . 2 (Base‘𝐾) = (Base‘𝐾)
2 tendopltp.l . 2 = (le‘𝐾)
3 simp1l 1260 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
43hllatd 35440 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
5 simp1 1172 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 tendopl.h . . . 4 𝐻 = (LHyp‘𝐾)
7 tendopl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendopl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendopl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
106, 7, 8, 9tendoplcl2 36854 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
11 tendopltp.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
121, 6, 7, 11trlcl 36240 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
135, 10, 12syl2anc 581 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
146, 7, 8tendocl 36843 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
15143adant2r 1233 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
161, 6, 7, 11trlcl 36240 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
175, 15, 16syl2anc 581 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
186, 7, 8tendocl 36843 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
19183adant2l 1231 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
201, 6, 7, 11trlcl 36240 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
215, 19, 20syl2anc 581 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
22 eqid 2826 . . . 4 (join‘𝐾) = (join‘𝐾)
231, 22latjcl 17405 . . 3 ((𝐾 ∈ Lat ∧ (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾)) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
244, 17, 21, 23syl3anc 1496 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
25 simp3 1174 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
261, 6, 7, 11trlcl 36240 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
275, 25, 26syl2anc 581 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
28 simp2l 1262 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑈𝐸)
29 simp2r 1263 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
309, 7tendopl2 36853 . . . . 5 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3128, 29, 25, 30syl3anc 1496 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3231fveq2d 6438 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) = (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))))
332, 22, 6, 7, 11trlco 36803 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
345, 15, 19, 33syl3anc 1496 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
3532, 34eqbrtrd 4896 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
362, 6, 7, 11, 8tendotp 36837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
37363adant2r 1233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
382, 6, 7, 11, 8tendotp 36837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
39383adant2l 1231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
401, 2, 22latjle12 17416 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾))) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
414, 17, 21, 27, 40syl13anc 1497 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
4237, 39, 41mpbi2and 705 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹))
431, 2, 4, 13, 24, 27, 35, 42lattrd 17412 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4874  cmpt 4953  ccom 5347  cfv 6124  (class class class)co 6906  cmpt2 6908  Basecbs 16223  lecple 16313  joincjn 17298  Latclat 17399  HLchlt 35426  LHypclh 36060  LTrncltrn 36177  trLctrl 36234  TEndoctendo 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-map 8125  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235  df-tendo 36831
This theorem is referenced by:  tendoplcl  36857
  Copyright terms: Public domain W3C validator