Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   GIF version

Theorem tendopltp 39210
Description: Trace-preserving property of endomorphism sum operation 𝑃, based on Theorems trlco 39157. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 39157) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopltp.l = (le‘𝐾)
tendopltp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopltp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2736 . 2 (Base‘𝐾) = (Base‘𝐾)
2 tendopltp.l . 2 = (le‘𝐾)
3 simp1l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
43hllatd 37793 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
5 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 tendopl.h . . . 4 𝐻 = (LHyp‘𝐾)
7 tendopl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendopl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendopl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
106, 7, 8, 9tendoplcl2 39208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
11 tendopltp.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
121, 6, 7, 11trlcl 38594 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
135, 10, 12syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
146, 7, 8tendocl 39197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
15143adant2r 1179 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
161, 6, 7, 11trlcl 38594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
175, 15, 16syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
186, 7, 8tendocl 39197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
19183adant2l 1178 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
201, 6, 7, 11trlcl 38594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
215, 19, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
22 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
231, 22latjcl 18320 . . 3 ((𝐾 ∈ Lat ∧ (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾)) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
244, 17, 21, 23syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
25 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
261, 6, 7, 11trlcl 38594 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
275, 25, 26syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
28 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑈𝐸)
29 simp2r 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
309, 7tendopl2 39207 . . . . 5 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3128, 29, 25, 30syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3231fveq2d 6843 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) = (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))))
332, 22, 6, 7, 11trlco 39157 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
345, 15, 19, 33syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
3532, 34eqbrtrd 5125 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
362, 6, 7, 11, 8tendotp 39191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
37363adant2r 1179 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
382, 6, 7, 11, 8tendotp 39191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
39383adant2l 1178 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
401, 2, 22latjle12 18331 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾))) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
414, 17, 21, 27, 40syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
4237, 39, 41mpbi2and 710 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹))
431, 2, 4, 13, 24, 27, 35, 42lattrd 18327 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5103  cmpt 5186  ccom 5635  cfv 6493  (class class class)co 7353  cmpo 7355  Basecbs 17075  lecple 17132  joincjn 18192  Latclat 18312  HLchlt 37779  LHypclh 38414  LTrncltrn 38531  trLctrl 38588  TEndoctendo 39182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-riotaBAD 37382
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7917  df-2nd 7918  df-undef 8200  df-map 8763  df-proset 18176  df-poset 18194  df-plt 18211  df-lub 18227  df-glb 18228  df-join 18229  df-meet 18230  df-p0 18306  df-p1 18307  df-lat 18313  df-clat 18380  df-oposet 37605  df-ol 37607  df-oml 37608  df-covers 37695  df-ats 37696  df-atl 37727  df-cvlat 37751  df-hlat 37780  df-llines 37928  df-lplanes 37929  df-lvols 37930  df-lines 37931  df-psubsp 37933  df-pmap 37934  df-padd 38226  df-lhyp 38418  df-laut 38419  df-ldil 38534  df-ltrn 38535  df-trl 38589  df-tendo 39185
This theorem is referenced by:  tendoplcl  39211
  Copyright terms: Public domain W3C validator