Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   GIF version

Theorem tendopltp 38488
Description: Trace-preserving property of endomorphism sum operation 𝑃, based on Theorems trlco 38435. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 38435) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopltp.l = (le‘𝐾)
tendopltp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopltp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2734 . 2 (Base‘𝐾) = (Base‘𝐾)
2 tendopltp.l . 2 = (le‘𝐾)
3 simp1l 1199 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
43hllatd 37072 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
5 simp1 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 tendopl.h . . . 4 𝐻 = (LHyp‘𝐾)
7 tendopl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendopl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendopl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
106, 7, 8, 9tendoplcl2 38486 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
11 tendopltp.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
121, 6, 7, 11trlcl 37872 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
135, 10, 12syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
146, 7, 8tendocl 38475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
15143adant2r 1181 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
161, 6, 7, 11trlcl 37872 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
175, 15, 16syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
186, 7, 8tendocl 38475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
19183adant2l 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
201, 6, 7, 11trlcl 37872 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
215, 19, 20syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
22 eqid 2734 . . . 4 (join‘𝐾) = (join‘𝐾)
231, 22latjcl 17917 . . 3 ((𝐾 ∈ Lat ∧ (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾)) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
244, 17, 21, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
25 simp3 1140 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
261, 6, 7, 11trlcl 37872 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
275, 25, 26syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
28 simp2l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑈𝐸)
29 simp2r 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
309, 7tendopl2 38485 . . . . 5 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3128, 29, 25, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3231fveq2d 6710 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) = (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))))
332, 22, 6, 7, 11trlco 38435 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
345, 15, 19, 33syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
3532, 34eqbrtrd 5065 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
362, 6, 7, 11, 8tendotp 38469 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
37363adant2r 1181 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
382, 6, 7, 11, 8tendotp 38469 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
39383adant2l 1180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
401, 2, 22latjle12 17928 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾))) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
414, 17, 21, 27, 40syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
4237, 39, 41mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹))
431, 2, 4, 13, 24, 27, 35, 42lattrd 17924 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5043  cmpt 5124  ccom 5544  cfv 6369  (class class class)co 7202  cmpo 7204  Basecbs 16684  lecple 16774  joincjn 17790  Latclat 17909  HLchlt 37058  LHypclh 37692  LTrncltrn 37809  trLctrl 37866  TEndoctendo 38460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-riotaBAD 36661
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-undef 8004  df-map 8499  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-p1 17904  df-lat 17910  df-clat 17977  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-lvols 37208  df-lines 37209  df-psubsp 37211  df-pmap 37212  df-padd 37504  df-lhyp 37696  df-laut 37697  df-ldil 37812  df-ltrn 37813  df-trl 37867  df-tendo 38463
This theorem is referenced by:  tendoplcl  38489
  Copyright terms: Public domain W3C validator