Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   GIF version

Theorem dih1dimatlem0 41329
Description: Lemma for dih1dimat 41331. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Distinct variable groups:   ,   𝐵,   𝑓,𝑖,𝑝,𝑠,𝑡,𝐸   𝑡,𝐹   𝐶,   𝑖,𝐺,𝑝,𝑡   𝑡,,𝐽   𝑓,𝑁,𝑠,𝑡   𝑓,,𝐾,𝑖,𝑝,𝑠,𝑡   𝑇,𝑓,,𝑖,𝑝,𝑠,𝑡   𝑈,𝑓,,𝑠,𝑡   𝑓,𝐻,,𝑖,𝑝,𝑠,𝑡   𝑓,𝑉,𝑖,𝑝,𝑠,𝑡   𝑓,𝑊,,𝑖,𝑝,𝑠,𝑡   𝑓,𝐼,𝑠   𝑖,𝑂,𝑝,𝑡   𝑃,   𝑡, ·
Allowed substitution hints:   𝐴(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝐵(𝑡,𝑓,𝑖,𝑠,𝑝)   𝐶(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑃(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑅(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝑆(𝑡,𝑓,,𝑖,𝑠,𝑝)   · (𝑓,,𝑖,𝑠,𝑝)   𝑈(𝑖,𝑝)   𝐸()   𝐹(𝑓,,𝑖,𝑠,𝑝)   𝐺(𝑓,,𝑠)   𝐼(𝑡,,𝑖,𝑝)   𝐽(𝑓,𝑖,𝑠,𝑝)   (𝑡,𝑓,𝑖,𝑠,𝑝)   𝑁(,𝑖,𝑝)   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑡,𝑓,,𝑖,𝑠,𝑝)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = (𝑝𝐺))
2 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝𝐸)
4 dih1dimat.l . . . . . . . 8 = (le‘𝐾)
5 dih1dimat.c . . . . . . . 8 𝐶 = (Atoms‘𝐾)
6 dih1dimat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
7 dih1dimat.p . . . . . . . 8 𝑃 = ((oc‘𝐾)‘𝑊)
84, 5, 6, 7lhpocnel2 40020 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
92, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
10 simpl2r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝐸)
11 simpl3 1194 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝑂)
12 dih1dimat.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
13 dih1dimat.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . . 11 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dih1dimat.o . . . . . . . . . . 11 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
16 dih1dimat.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
17 dih1dimat.d . . . . . . . . . . 11 𝐹 = (Scalar‘𝑈)
18 dih1dimat.j . . . . . . . . . . 11 𝐽 = (invr𝐹)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 41105 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
2019simpld 494 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
212, 10, 11, 20syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐽𝑠) ∈ 𝐸)
22 simpl2l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑓𝑇)
236, 13, 14tendocl 40768 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
242, 21, 22, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
254, 5, 6, 13ltrnel 40140 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
262, 24, 9, 25syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
27 dih1dimat.g . . . . . . 7 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
284, 5, 6, 13, 27ltrniotacl 40580 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → 𝐺𝑇)
292, 9, 26, 28syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺𝑇)
306, 13, 14tendocl 40768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸𝐺𝑇) → (𝑝𝐺) ∈ 𝑇)
312, 3, 29, 30syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) ∈ 𝑇)
321, 31eqeltrd 2829 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖𝑇)
336, 14tendococl 40773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
342, 3, 21, 33syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
35 simp1 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3683ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
37203adant2l 1179 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
38 simp2l 1200 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝑓𝑇)
3935, 37, 38, 23syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
4035, 39, 36, 25syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
4135, 36, 40, 28syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺𝑇)
424, 5, 6, 13, 27ltrniotaval 40582 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
4335, 36, 40, 42syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
444, 5, 6, 13cdlemd 40208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4535, 41, 39, 36, 43, 44syl311anc 1386 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺 = ((𝐽𝑠)‘𝑓))
4645adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4746fveq2d 6865 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
486, 13, 14tendocoval 40767 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
492, 3, 21, 22, 48syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
5047, 1, 493eqtr4d 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
51 coass 6241 . . . . 5 ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠))
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 41106 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
532, 10, 11, 52syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
5453coeq2d 5829 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇)))
556, 13, 14tendo1mulr 40772 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
562, 3, 55syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
5754, 56eqtrd 2765 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = 𝑝)
5851, 57eqtr2id 2778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
59 fveq1 6860 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑓) = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
6059eqeq2d 2741 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑖 = (𝑡𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓)))
61 coeq1 5824 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑠) = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
6261eqeq2d 2741 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑝 = (𝑡𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠)))
6360, 62anbi12d 632 . . . . 5 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → ((𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))))
6463rspcev 3591 . . . 4 (((𝑝 ∘ (𝐽𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6534, 50, 58, 64syl12anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6632, 3, 65jca31 514 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
67 simp3r 1203 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑝 = (𝑡𝑠))
6867fveq1d 6863 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝‘((𝐽𝑠)‘𝑓)) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
69 simp1l1 1267 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
70 simp2 1137 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑡𝐸)
71 simpl2r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑠𝐸)
72713ad2ant1 1133 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝐸)
736, 14tendococl 40773 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
7469, 70, 72, 73syl3anc 1373 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑠) ∈ 𝐸)
75 simp1l3 1269 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝑂)
7669, 72, 75, 20syl3anc 1373 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐽𝑠) ∈ 𝐸)
77 simpl2l 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑓𝑇)
78773ad2ant1 1133 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑓𝑇)
796, 13, 14tendocoval 40767 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑡𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
8069, 74, 76, 78, 79syl121anc 1377 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
81 coass 6241 . . . . . . . . 9 ((𝑡𝑠) ∘ (𝐽𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽𝑠)))
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 41107 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8369, 72, 75, 82syl3anc 1373 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8483coeq2d 5829 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = (𝑡 ∘ ( I ↾ 𝑇)))
856, 13, 14tendo1mulr 40772 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8669, 70, 85syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8784, 86eqtrd 2765 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = 𝑡)
8881, 87eqtrid 2777 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → ((𝑡𝑠) ∘ (𝐽𝑠)) = 𝑡)
8988fveq1d 6863 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = (𝑡𝑓))
9068, 80, 893eqtr2rd 2772 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
91 simp3l 1202 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑡𝑓))
9245adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
93923ad2ant1 1133 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝐺 = ((𝐽𝑠)‘𝑓))
9493fveq2d 6865 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
9590, 91, 943eqtr4d 2775 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑝𝐺))
9695rexlimdv3a 3139 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → (∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) → 𝑖 = (𝑝𝐺)))
9796impr 454 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑖 = (𝑝𝐺))
98 simprlr 779 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑝𝐸)
9997, 98jca 511 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
10066, 99impbida 800 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cmpt 5191   I cid 5535  cres 5643  ccom 5645  cfv 6514  crio 7346  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  lecple 17234  occoc 17235  0gc0g 17409  invrcinvr 20303  LSubSpclss 20844  LSpanclspn 20884  LSAtomsclsa 38974  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  TEndoctendo 40753  DVecHcdvh 41079  DIsoHcdih 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-dvech 41080
This theorem is referenced by:  dih1dimatlem  41330
  Copyright terms: Public domain W3C validator