Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   GIF version

Theorem dih1dimatlem0 38008
Description: Lemma for dih1dimat 38010. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Distinct variable groups:   ,   𝐵,   𝑓,𝑖,𝑝,𝑠,𝑡,𝐸   𝑡,𝐹   𝐶,   𝑖,𝐺,𝑝,𝑡   𝑡,,𝐽   𝑓,𝑁,𝑠,𝑡   𝑓,,𝐾,𝑖,𝑝,𝑠,𝑡   𝑇,𝑓,,𝑖,𝑝,𝑠,𝑡   𝑈,𝑓,,𝑠,𝑡   𝑓,𝐻,,𝑖,𝑝,𝑠,𝑡   𝑓,𝑉,𝑖,𝑝,𝑠,𝑡   𝑓,𝑊,,𝑖,𝑝,𝑠,𝑡   𝑓,𝐼,𝑠   𝑖,𝑂,𝑝,𝑡   𝑃,   𝑡, ·
Allowed substitution hints:   𝐴(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝐵(𝑡,𝑓,𝑖,𝑠,𝑝)   𝐶(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑃(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑅(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝑆(𝑡,𝑓,,𝑖,𝑠,𝑝)   · (𝑓,,𝑖,𝑠,𝑝)   𝑈(𝑖,𝑝)   𝐸()   𝐹(𝑓,,𝑖,𝑠,𝑝)   𝐺(𝑓,,𝑠)   𝐼(𝑡,,𝑖,𝑝)   𝐽(𝑓,𝑖,𝑠,𝑝)   (𝑡,𝑓,𝑖,𝑠,𝑝)   𝑁(,𝑖,𝑝)   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑡,𝑓,,𝑖,𝑠,𝑝)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = (𝑝𝐺))
2 simpl1 1184 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝𝐸)
4 dih1dimat.l . . . . . . . 8 = (le‘𝐾)
5 dih1dimat.c . . . . . . . 8 𝐶 = (Atoms‘𝐾)
6 dih1dimat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
7 dih1dimat.p . . . . . . . 8 𝑃 = ((oc‘𝐾)‘𝑊)
84, 5, 6, 7lhpocnel2 36699 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
92, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
10 simpl2r 1220 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝐸)
11 simpl3 1186 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝑂)
12 dih1dimat.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
13 dih1dimat.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . . 11 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dih1dimat.o . . . . . . . . . . 11 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
16 dih1dimat.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
17 dih1dimat.d . . . . . . . . . . 11 𝐹 = (Scalar‘𝑈)
18 dih1dimat.j . . . . . . . . . . 11 𝐽 = (invr𝐹)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 37784 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
2019simpld 495 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
212, 10, 11, 20syl3anc 1364 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐽𝑠) ∈ 𝐸)
22 simpl2l 1219 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑓𝑇)
236, 13, 14tendocl 37447 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
242, 21, 22, 23syl3anc 1364 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
254, 5, 6, 13ltrnel 36819 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
262, 24, 9, 25syl3anc 1364 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
27 dih1dimat.g . . . . . . 7 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
284, 5, 6, 13, 27ltrniotacl 37259 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → 𝐺𝑇)
292, 9, 26, 28syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺𝑇)
306, 13, 14tendocl 37447 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸𝐺𝑇) → (𝑝𝐺) ∈ 𝑇)
312, 3, 29, 30syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) ∈ 𝑇)
321, 31eqeltrd 2882 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖𝑇)
336, 14tendococl 37452 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
342, 3, 21, 33syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
35 simp1 1129 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3683ad2ant1 1126 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
37203adant2l 1171 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
38 simp2l 1192 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝑓𝑇)
3935, 37, 38, 23syl3anc 1364 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
4035, 39, 36, 25syl3anc 1364 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
4135, 36, 40, 28syl3anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺𝑇)
424, 5, 6, 13, 27ltrniotaval 37261 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
4335, 36, 40, 42syl3anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
444, 5, 6, 13cdlemd 36887 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4535, 41, 39, 36, 43, 44syl311anc 1377 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺 = ((𝐽𝑠)‘𝑓))
4645adantr 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4746fveq2d 6545 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
486, 13, 14tendocoval 37446 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
492, 3, 21, 22, 48syl121anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
5047, 1, 493eqtr4d 2840 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
51 coass 5996 . . . . 5 ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠))
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 37785 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
532, 10, 11, 52syl3anc 1364 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
5453coeq2d 5622 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇)))
556, 13, 14tendo1mulr 37451 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
562, 3, 55syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
5754, 56eqtrd 2830 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = 𝑝)
5851, 57syl5req 2843 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
59 fveq1 6540 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑓) = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
6059eqeq2d 2804 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑖 = (𝑡𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓)))
61 coeq1 5617 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑠) = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
6261eqeq2d 2804 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑝 = (𝑡𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠)))
6360, 62anbi12d 630 . . . . 5 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → ((𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))))
6463rspcev 3557 . . . 4 (((𝑝 ∘ (𝐽𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6534, 50, 58, 64syl12anc 833 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6632, 3, 65jca31 515 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
67 simp3r 1195 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑝 = (𝑡𝑠))
6867fveq1d 6543 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝‘((𝐽𝑠)‘𝑓)) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
69 simp1l1 1259 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
70 simp2 1130 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑡𝐸)
71 simpl2r 1220 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑠𝐸)
72713ad2ant1 1126 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝐸)
736, 14tendococl 37452 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
7469, 70, 72, 73syl3anc 1364 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑠) ∈ 𝐸)
75 simp1l3 1261 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝑂)
7669, 72, 75, 20syl3anc 1364 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐽𝑠) ∈ 𝐸)
77 simpl2l 1219 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑓𝑇)
78773ad2ant1 1126 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑓𝑇)
796, 13, 14tendocoval 37446 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑡𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
8069, 74, 76, 78, 79syl121anc 1368 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
81 coass 5996 . . . . . . . . 9 ((𝑡𝑠) ∘ (𝐽𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽𝑠)))
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 37786 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8369, 72, 75, 82syl3anc 1364 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8483coeq2d 5622 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = (𝑡 ∘ ( I ↾ 𝑇)))
856, 13, 14tendo1mulr 37451 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8669, 70, 85syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8784, 86eqtrd 2830 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = 𝑡)
8881, 87syl5eq 2842 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → ((𝑡𝑠) ∘ (𝐽𝑠)) = 𝑡)
8988fveq1d 6543 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = (𝑡𝑓))
9068, 80, 893eqtr2rd 2837 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
91 simp3l 1194 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑡𝑓))
9245adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
93923ad2ant1 1126 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝐺 = ((𝐽𝑠)‘𝑓))
9493fveq2d 6545 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
9590, 91, 943eqtr4d 2840 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑝𝐺))
9695rexlimdv3a 3248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → (∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) → 𝑖 = (𝑝𝐺)))
9796impr 455 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑖 = (𝑝𝐺))
98 simprlr 776 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑝𝐸)
9997, 98jca 512 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
10066, 99impbida 797 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wne 2983  wrex 3105   class class class wbr 4964  cmpt 5043   I cid 5350  cres 5448  ccom 5450  cfv 6228  crio 6979  Basecbs 16312  Scalarcsca 16397   ·𝑠 cvsca 16398  lecple 16401  occoc 16402  0gc0g 16542  invrcinvr 19111  LSubSpclss 19393  LSpanclspn 19433  LSAtomsclsa 35654  Atomscatm 35943  HLchlt 36030  LHypclh 36664  LTrncltrn 36781  trLctrl 36838  TEndoctendo 37432  DVecHcdvh 37758  DIsoHcdih 37908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-riotaBAD 35633
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-tpos 7746  df-undef 7793  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-map 8261  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-n0 11748  df-z 11832  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-0g 16544  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-oposet 35856  df-ol 35858  df-oml 35859  df-covers 35946  df-ats 35947  df-atl 35978  df-cvlat 36002  df-hlat 36031  df-llines 36178  df-lplanes 36179  df-lvols 36180  df-lines 36181  df-psubsp 36183  df-pmap 36184  df-padd 36476  df-lhyp 36668  df-laut 36669  df-ldil 36784  df-ltrn 36785  df-trl 36839  df-tendo 37435  df-edring 37437  df-dvech 37759
This theorem is referenced by:  dih1dimatlem  38009
  Copyright terms: Public domain W3C validator