Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   GIF version

Theorem dih1dimatlem0 41311
Description: Lemma for dih1dimat 41313. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Distinct variable groups:   ,   𝐵,   𝑓,𝑖,𝑝,𝑠,𝑡,𝐸   𝑡,𝐹   𝐶,   𝑖,𝐺,𝑝,𝑡   𝑡,,𝐽   𝑓,𝑁,𝑠,𝑡   𝑓,,𝐾,𝑖,𝑝,𝑠,𝑡   𝑇,𝑓,,𝑖,𝑝,𝑠,𝑡   𝑈,𝑓,,𝑠,𝑡   𝑓,𝐻,,𝑖,𝑝,𝑠,𝑡   𝑓,𝑉,𝑖,𝑝,𝑠,𝑡   𝑓,𝑊,,𝑖,𝑝,𝑠,𝑡   𝑓,𝐼,𝑠   𝑖,𝑂,𝑝,𝑡   𝑃,   𝑡, ·
Allowed substitution hints:   𝐴(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝐵(𝑡,𝑓,𝑖,𝑠,𝑝)   𝐶(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑃(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑅(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝑆(𝑡,𝑓,,𝑖,𝑠,𝑝)   · (𝑓,,𝑖,𝑠,𝑝)   𝑈(𝑖,𝑝)   𝐸()   𝐹(𝑓,,𝑖,𝑠,𝑝)   𝐺(𝑓,,𝑠)   𝐼(𝑡,,𝑖,𝑝)   𝐽(𝑓,𝑖,𝑠,𝑝)   (𝑡,𝑓,𝑖,𝑠,𝑝)   𝑁(,𝑖,𝑝)   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑡,𝑓,,𝑖,𝑠,𝑝)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 771 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = (𝑝𝐺))
2 simpl1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 773 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝𝐸)
4 dih1dimat.l . . . . . . . 8 = (le‘𝐾)
5 dih1dimat.c . . . . . . . 8 𝐶 = (Atoms‘𝐾)
6 dih1dimat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
7 dih1dimat.p . . . . . . . 8 𝑃 = ((oc‘𝐾)‘𝑊)
84, 5, 6, 7lhpocnel2 40002 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
92, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
10 simpl2r 1226 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝐸)
11 simpl3 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝑂)
12 dih1dimat.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
13 dih1dimat.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . . 11 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dih1dimat.o . . . . . . . . . . 11 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
16 dih1dimat.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
17 dih1dimat.d . . . . . . . . . . 11 𝐹 = (Scalar‘𝑈)
18 dih1dimat.j . . . . . . . . . . 11 𝐽 = (invr𝐹)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 41087 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
2019simpld 494 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
212, 10, 11, 20syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐽𝑠) ∈ 𝐸)
22 simpl2l 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑓𝑇)
236, 13, 14tendocl 40750 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
242, 21, 22, 23syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
254, 5, 6, 13ltrnel 40122 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
262, 24, 9, 25syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
27 dih1dimat.g . . . . . . 7 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
284, 5, 6, 13, 27ltrniotacl 40562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → 𝐺𝑇)
292, 9, 26, 28syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺𝑇)
306, 13, 14tendocl 40750 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸𝐺𝑇) → (𝑝𝐺) ∈ 𝑇)
312, 3, 29, 30syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) ∈ 𝑇)
321, 31eqeltrd 2839 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖𝑇)
336, 14tendococl 40755 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
342, 3, 21, 33syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
35 simp1 1135 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3683ad2ant1 1132 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
37203adant2l 1177 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
38 simp2l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝑓𝑇)
3935, 37, 38, 23syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
4035, 39, 36, 25syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
4135, 36, 40, 28syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺𝑇)
424, 5, 6, 13, 27ltrniotaval 40564 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
4335, 36, 40, 42syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
444, 5, 6, 13cdlemd 40190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4535, 41, 39, 36, 43, 44syl311anc 1383 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺 = ((𝐽𝑠)‘𝑓))
4645adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4746fveq2d 6911 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
486, 13, 14tendocoval 40749 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
492, 3, 21, 22, 48syl121anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
5047, 1, 493eqtr4d 2785 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
51 coass 6287 . . . . 5 ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠))
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 41088 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
532, 10, 11, 52syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
5453coeq2d 5876 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇)))
556, 13, 14tendo1mulr 40754 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
562, 3, 55syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
5754, 56eqtrd 2775 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = 𝑝)
5851, 57eqtr2id 2788 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
59 fveq1 6906 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑓) = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
6059eqeq2d 2746 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑖 = (𝑡𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓)))
61 coeq1 5871 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑠) = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
6261eqeq2d 2746 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑝 = (𝑡𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠)))
6360, 62anbi12d 632 . . . . 5 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → ((𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))))
6463rspcev 3622 . . . 4 (((𝑝 ∘ (𝐽𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6534, 50, 58, 64syl12anc 837 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6632, 3, 65jca31 514 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
67 simp3r 1201 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑝 = (𝑡𝑠))
6867fveq1d 6909 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝‘((𝐽𝑠)‘𝑓)) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
69 simp1l1 1265 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
70 simp2 1136 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑡𝐸)
71 simpl2r 1226 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑠𝐸)
72713ad2ant1 1132 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝐸)
736, 14tendococl 40755 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
7469, 70, 72, 73syl3anc 1370 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑠) ∈ 𝐸)
75 simp1l3 1267 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝑂)
7669, 72, 75, 20syl3anc 1370 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐽𝑠) ∈ 𝐸)
77 simpl2l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑓𝑇)
78773ad2ant1 1132 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑓𝑇)
796, 13, 14tendocoval 40749 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑡𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
8069, 74, 76, 78, 79syl121anc 1374 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
81 coass 6287 . . . . . . . . 9 ((𝑡𝑠) ∘ (𝐽𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽𝑠)))
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 41089 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8369, 72, 75, 82syl3anc 1370 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8483coeq2d 5876 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = (𝑡 ∘ ( I ↾ 𝑇)))
856, 13, 14tendo1mulr 40754 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8669, 70, 85syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8784, 86eqtrd 2775 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = 𝑡)
8881, 87eqtrid 2787 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → ((𝑡𝑠) ∘ (𝐽𝑠)) = 𝑡)
8988fveq1d 6909 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = (𝑡𝑓))
9068, 80, 893eqtr2rd 2782 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
91 simp3l 1200 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑡𝑓))
9245adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
93923ad2ant1 1132 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝐺 = ((𝐽𝑠)‘𝑓))
9493fveq2d 6911 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
9590, 91, 943eqtr4d 2785 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑝𝐺))
9695rexlimdv3a 3157 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → (∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) → 𝑖 = (𝑝𝐺)))
9796impr 454 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑖 = (𝑝𝐺))
98 simprlr 780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑝𝐸)
9997, 98jca 511 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
10066, 99impbida 801 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cmpt 5231   I cid 5582  cres 5691  ccom 5693  cfv 6563  crio 7387  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  lecple 17305  occoc 17306  0gc0g 17486  invrcinvr 20404  LSubSpclss 20947  LSpanclspn 20987  LSAtomsclsa 38956  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141  TEndoctendo 40735  DVecHcdvh 41061  DIsoHcdih 41211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-dvech 41062
This theorem is referenced by:  dih1dimatlem  41312
  Copyright terms: Public domain W3C validator