Proof of Theorem dih1dimatlem0
| Step | Hyp | Ref
| Expression |
| 1 | | simprl 771 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 = (𝑝‘𝐺)) |
| 2 | | simpl1 1192 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | simprr 773 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑝 ∈ 𝐸) |
| 4 | | dih1dimat.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 5 | | dih1dimat.c |
. . . . . . . 8
⊢ 𝐶 = (Atoms‘𝐾) |
| 6 | | dih1dimat.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | dih1dimat.p |
. . . . . . . 8
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 8 | 4, 5, 6, 7 | lhpocnel2 40021 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 9 | 2, 8 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 10 | | simpl2r 1228 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑠 ∈ 𝐸) |
| 11 | | simpl3 1194 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑠 ≠ 𝑂) |
| 12 | | dih1dimat.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐾) |
| 13 | | dih1dimat.t |
. . . . . . . . . . 11
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 14 | | dih1dimat.e |
. . . . . . . . . . 11
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 15 | | dih1dimat.o |
. . . . . . . . . . 11
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 16 | | dih1dimat.u |
. . . . . . . . . . 11
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 17 | | dih1dimat.d |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑈) |
| 18 | | dih1dimat.j |
. . . . . . . . . . 11
⊢ 𝐽 = (invr‘𝐹) |
| 19 | 12, 6, 13, 14, 15, 16, 17, 18 | tendoinvcl 41106 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠) ∈ 𝐸 ∧ (𝐽‘𝑠) ≠ 𝑂)) |
| 20 | 19 | simpld 494 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → (𝐽‘𝑠) ∈ 𝐸) |
| 21 | 2, 10, 11, 20 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝐽‘𝑠) ∈ 𝐸) |
| 22 | | simpl2l 1227 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑓 ∈ 𝑇) |
| 23 | 6, 13, 14 | tendocl 40769 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐽‘𝑠) ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
| 24 | 2, 21, 22, 23 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
| 25 | 4, 5, 6, 13 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐽‘𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
| 26 | 2, 24, 9, 25 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
| 27 | | dih1dimat.g |
. . . . . . 7
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
| 28 | 4, 5, 6, 13, 27 | ltrniotacl 40581 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 29 | 2, 9, 26, 28 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝐺 ∈ 𝑇) |
| 30 | 6, 13, 14 | tendocl 40769 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑝‘𝐺) ∈ 𝑇) |
| 31 | 2, 3, 29, 30 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝‘𝐺) ∈ 𝑇) |
| 32 | 1, 31 | eqeltrd 2841 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 ∈ 𝑇) |
| 33 | 6, 14 | tendococl 40774 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸) |
| 34 | 2, 3, 21, 33 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸) |
| 35 | | simp1 1137 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 36 | 8 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 37 | 20 | 3adant2l 1179 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐽‘𝑠) ∈ 𝐸) |
| 38 | | simp2l 1200 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝑓 ∈ 𝑇) |
| 39 | 35, 37, 38, 23 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
| 40 | 35, 39, 36, 25 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
| 41 | 35, 36, 40, 28 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝐺 ∈ 𝑇) |
| 42 | 4, 5, 6, 13, 27 | ltrniotaval 40583 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) → (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
| 43 | 35, 36, 40, 42 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
| 44 | 4, 5, 6, 13 | cdlemd 40209 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
| 45 | 35, 41, 39, 36, 43, 44 | syl311anc 1386 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
| 46 | 45 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
| 47 | 46 | fveq2d 6910 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝‘𝐺) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
| 48 | 6, 13, 14 | tendocoval 40768 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) ∧ 𝑓 ∈ 𝑇) → ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
| 49 | 2, 3, 21, 22, 48 | syl121anc 1377 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
| 50 | 47, 1, 49 | 3eqtr4d 2787 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓)) |
| 51 | | coass 6285 |
. . . . 5
⊢ ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) |
| 52 | 12, 6, 13, 14, 15, 16, 17, 18 | tendolinv 41107 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠) ∘ 𝑠) = ( I ↾ 𝑇)) |
| 53 | 2, 10, 11, 52 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝐽‘𝑠) ∘ 𝑠) = ( I ↾ 𝑇)) |
| 54 | 53 | coeq2d 5873 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇))) |
| 55 | 6, 13, 14 | tendo1mulr 40773 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝) |
| 56 | 2, 3, 55 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝) |
| 57 | 54, 56 | eqtrd 2777 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) = 𝑝) |
| 58 | 51, 57 | eqtr2id 2790 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)) |
| 59 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑡‘𝑓) = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓)) |
| 60 | 59 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑖 = (𝑡‘𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓))) |
| 61 | | coeq1 5868 |
. . . . . . 7
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑡 ∘ 𝑠) = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)) |
| 62 | 61 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑝 = (𝑡 ∘ 𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠))) |
| 63 | 60, 62 | anbi12d 632 |
. . . . 5
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → ((𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)))) |
| 64 | 63 | rspcev 3622 |
. . . 4
⊢ (((𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠))) → ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) |
| 65 | 34, 50, 58, 64 | syl12anc 837 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) |
| 66 | 32, 3, 65 | jca31 514 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) |
| 67 | | simp3r 1203 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑝 = (𝑡 ∘ 𝑠)) |
| 68 | 67 | fveq1d 6908 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑝‘((𝐽‘𝑠)‘𝑓)) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
| 69 | | simp1l1 1267 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 70 | | simp2 1138 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑡 ∈ 𝐸) |
| 71 | | simpl2r 1228 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝑠 ∈ 𝐸) |
| 72 | 71 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑠 ∈ 𝐸) |
| 73 | 6, 14 | tendococl 40774 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) → (𝑡 ∘ 𝑠) ∈ 𝐸) |
| 74 | 69, 70, 72, 73 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ 𝑠) ∈ 𝐸) |
| 75 | | simp1l3 1269 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑠 ≠ 𝑂) |
| 76 | 69, 72, 75, 20 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝐽‘𝑠) ∈ 𝐸) |
| 77 | | simpl2l 1227 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝑓 ∈ 𝑇) |
| 78 | 77 | 3ad2ant1 1134 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑓 ∈ 𝑇) |
| 79 | 6, 13, 14 | tendocoval 40768 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑡 ∘ 𝑠) ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) ∧ 𝑓 ∈ 𝑇) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
| 80 | 69, 74, 76, 78, 79 | syl121anc 1377 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
| 81 | | coass 6285 |
. . . . . . . . 9
⊢ ((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) |
| 82 | 12, 6, 13, 14, 15, 16, 17, 18 | tendorinv 41108 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → (𝑠 ∘ (𝐽‘𝑠)) = ( I ↾ 𝑇)) |
| 83 | 69, 72, 75, 82 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑠 ∘ (𝐽‘𝑠)) = ( I ↾ 𝑇)) |
| 84 | 83 | coeq2d 5873 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) = (𝑡 ∘ ( I ↾ 𝑇))) |
| 85 | 6, 13, 14 | tendo1mulr 40773 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡) |
| 86 | 69, 70, 85 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡) |
| 87 | 84, 86 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) = 𝑡) |
| 88 | 81, 87 | eqtrid 2789 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → ((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠)) = 𝑡) |
| 89 | 88 | fveq1d 6908 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = (𝑡‘𝑓)) |
| 90 | 68, 80, 89 | 3eqtr2rd 2784 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
| 91 | | simp3l 1202 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑖 = (𝑡‘𝑓)) |
| 92 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
| 93 | 92 | 3ad2ant1 1134 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
| 94 | 93 | fveq2d 6910 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑝‘𝐺) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
| 95 | 90, 91, 94 | 3eqtr4d 2787 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑖 = (𝑝‘𝐺)) |
| 96 | 95 | rexlimdv3a 3159 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → (∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)) → 𝑖 = (𝑝‘𝐺))) |
| 97 | 96 | impr 454 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → 𝑖 = (𝑝‘𝐺)) |
| 98 | | simprlr 780 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → 𝑝 ∈ 𝐸) |
| 99 | 97, 98 | jca 511 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) |
| 100 | 66, 99 | impbida 801 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸) ↔ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))))) |