Proof of Theorem dih1dimatlem0
Step | Hyp | Ref
| Expression |
1 | | simprl 767 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 = (𝑝‘𝐺)) |
2 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simprr 769 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑝 ∈ 𝐸) |
4 | | dih1dimat.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
5 | | dih1dimat.c |
. . . . . . . 8
⊢ 𝐶 = (Atoms‘𝐾) |
6 | | dih1dimat.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | dih1dimat.p |
. . . . . . . 8
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
8 | 4, 5, 6, 7 | lhpocnel2 37960 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
9 | 2, 8 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
10 | | simpl2r 1225 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑠 ∈ 𝐸) |
11 | | simpl3 1191 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑠 ≠ 𝑂) |
12 | | dih1dimat.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐾) |
13 | | dih1dimat.t |
. . . . . . . . . . 11
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | dih1dimat.e |
. . . . . . . . . . 11
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
15 | | dih1dimat.o |
. . . . . . . . . . 11
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
16 | | dih1dimat.u |
. . . . . . . . . . 11
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
17 | | dih1dimat.d |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑈) |
18 | | dih1dimat.j |
. . . . . . . . . . 11
⊢ 𝐽 = (invr‘𝐹) |
19 | 12, 6, 13, 14, 15, 16, 17, 18 | tendoinvcl 39045 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠) ∈ 𝐸 ∧ (𝐽‘𝑠) ≠ 𝑂)) |
20 | 19 | simpld 494 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → (𝐽‘𝑠) ∈ 𝐸) |
21 | 2, 10, 11, 20 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝐽‘𝑠) ∈ 𝐸) |
22 | | simpl2l 1224 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑓 ∈ 𝑇) |
23 | 6, 13, 14 | tendocl 38708 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐽‘𝑠) ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
24 | 2, 21, 22, 23 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
25 | 4, 5, 6, 13 | ltrnel 38080 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐽‘𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
26 | 2, 24, 9, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
27 | | dih1dimat.g |
. . . . . . 7
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
28 | 4, 5, 6, 13, 27 | ltrniotacl 38520 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
29 | 2, 9, 26, 28 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝐺 ∈ 𝑇) |
30 | 6, 13, 14 | tendocl 38708 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑝‘𝐺) ∈ 𝑇) |
31 | 2, 3, 29, 30 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝‘𝐺) ∈ 𝑇) |
32 | 1, 31 | eqeltrd 2839 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 ∈ 𝑇) |
33 | 6, 14 | tendococl 38713 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸) |
34 | 2, 3, 21, 33 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸) |
35 | | simp1 1134 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
36 | 8 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊)) |
37 | 20 | 3adant2l 1176 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐽‘𝑠) ∈ 𝐸) |
38 | | simp2l 1197 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝑓 ∈ 𝑇) |
39 | 35, 37, 38, 23 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) |
40 | 35, 39, 36, 25 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) |
41 | 35, 36, 40, 28 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝐺 ∈ 𝑇) |
42 | 4, 5, 6, 13, 27 | ltrniotaval 38522 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((((𝐽‘𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽‘𝑠)‘𝑓)‘𝑃) ≤ 𝑊)) → (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
43 | 35, 36, 40, 42 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) |
44 | 4, 5, 6, 13 | cdlemd 38148 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ((𝐽‘𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
45 | 35, 41, 39, 36, 43, 44 | syl311anc 1382 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
46 | 45 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
47 | 46 | fveq2d 6760 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝‘𝐺) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
48 | 6, 13, 14 | tendocoval 38707 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) ∧ 𝑓 ∈ 𝑇) → ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
49 | 2, 3, 21, 22, 48 | syl121anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
50 | 47, 1, 49 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓)) |
51 | | coass 6158 |
. . . . 5
⊢ ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) |
52 | 12, 6, 13, 14, 15, 16, 17, 18 | tendolinv 39046 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → ((𝐽‘𝑠) ∘ 𝑠) = ( I ↾ 𝑇)) |
53 | 2, 10, 11, 52 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝐽‘𝑠) ∘ 𝑠) = ( I ↾ 𝑇)) |
54 | 53 | coeq2d 5760 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇))) |
55 | 6, 13, 14 | tendo1mulr 38712 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝) |
56 | 2, 3, 55 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝) |
57 | 54, 56 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → (𝑝 ∘ ((𝐽‘𝑠) ∘ 𝑠)) = 𝑝) |
58 | 51, 57 | eqtr2id 2792 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)) |
59 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑡‘𝑓) = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓)) |
60 | 59 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑖 = (𝑡‘𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓))) |
61 | | coeq1 5755 |
. . . . . . 7
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑡 ∘ 𝑠) = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)) |
62 | 61 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → (𝑝 = (𝑡 ∘ 𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠))) |
63 | 60, 62 | anbi12d 630 |
. . . . 5
⊢ (𝑡 = (𝑝 ∘ (𝐽‘𝑠)) → ((𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠)))) |
64 | 63 | rspcev 3552 |
. . . 4
⊢ (((𝑝 ∘ (𝐽‘𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽‘𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽‘𝑠)) ∘ 𝑠))) → ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) |
65 | 34, 50, 58, 64 | syl12anc 833 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) |
66 | 32, 3, 65 | jca31 514 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) → ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) |
67 | | simp3r 1200 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑝 = (𝑡 ∘ 𝑠)) |
68 | 67 | fveq1d 6758 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑝‘((𝐽‘𝑠)‘𝑓)) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
69 | | simp1l1 1264 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
70 | | simp2 1135 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑡 ∈ 𝐸) |
71 | | simpl2r 1225 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝑠 ∈ 𝐸) |
72 | 71 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑠 ∈ 𝐸) |
73 | 6, 14 | tendococl 38713 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) → (𝑡 ∘ 𝑠) ∈ 𝐸) |
74 | 69, 70, 72, 73 | syl3anc 1369 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ 𝑠) ∈ 𝐸) |
75 | | simp1l3 1266 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑠 ≠ 𝑂) |
76 | 69, 72, 75, 20 | syl3anc 1369 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝐽‘𝑠) ∈ 𝐸) |
77 | | simpl2l 1224 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝑓 ∈ 𝑇) |
78 | 77 | 3ad2ant1 1131 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑓 ∈ 𝑇) |
79 | 6, 13, 14 | tendocoval 38707 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑡 ∘ 𝑠) ∈ 𝐸 ∧ (𝐽‘𝑠) ∈ 𝐸) ∧ 𝑓 ∈ 𝑇) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
80 | 69, 74, 76, 78, 79 | syl121anc 1373 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = ((𝑡 ∘ 𝑠)‘((𝐽‘𝑠)‘𝑓))) |
81 | | coass 6158 |
. . . . . . . . 9
⊢ ((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) |
82 | 12, 6, 13, 14, 15, 16, 17, 18 | tendorinv 39047 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) → (𝑠 ∘ (𝐽‘𝑠)) = ( I ↾ 𝑇)) |
83 | 69, 72, 75, 82 | syl3anc 1369 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑠 ∘ (𝐽‘𝑠)) = ( I ↾ 𝑇)) |
84 | 83 | coeq2d 5760 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) = (𝑡 ∘ ( I ↾ 𝑇))) |
85 | 6, 13, 14 | tendo1mulr 38712 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑡 ∈ 𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡) |
86 | 69, 70, 85 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡) |
87 | 84, 86 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽‘𝑠))) = 𝑡) |
88 | 81, 87 | syl5eq 2791 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → ((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠)) = 𝑡) |
89 | 88 | fveq1d 6758 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (((𝑡 ∘ 𝑠) ∘ (𝐽‘𝑠))‘𝑓) = (𝑡‘𝑓)) |
90 | 68, 80, 89 | 3eqtr2rd 2785 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑡‘𝑓) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
91 | | simp3l 1199 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑖 = (𝑡‘𝑓)) |
92 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
93 | 92 | 3ad2ant1 1131 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝐺 = ((𝐽‘𝑠)‘𝑓)) |
94 | 93 | fveq2d 6760 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → (𝑝‘𝐺) = (𝑝‘((𝐽‘𝑠)‘𝑓))) |
95 | 90, 91, 94 | 3eqtr4d 2788 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) ∧ 𝑡 ∈ 𝐸 ∧ (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))) → 𝑖 = (𝑝‘𝐺)) |
96 | 95 | rexlimdv3a 3214 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ (𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸)) → (∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)) → 𝑖 = (𝑝‘𝐺))) |
97 | 96 | impr 454 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → 𝑖 = (𝑝‘𝐺)) |
98 | | simprlr 776 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → 𝑝 ∈ 𝐸) |
99 | 97, 98 | jca 511 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) ∧ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠)))) → (𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸)) |
100 | 66, 99 | impbida 797 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸) ↔ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))))) |