Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   GIF version

Theorem dih1dimatlem0 38643
 Description: Lemma for dih1dimat 38645. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
Distinct variable groups:   ,   𝐵,   𝑓,𝑖,𝑝,𝑠,𝑡,𝐸   𝑡,𝐹   𝐶,   𝑖,𝐺,𝑝,𝑡   𝑡,,𝐽   𝑓,𝑁,𝑠,𝑡   𝑓,,𝐾,𝑖,𝑝,𝑠,𝑡   𝑇,𝑓,,𝑖,𝑝,𝑠,𝑡   𝑈,𝑓,,𝑠,𝑡   𝑓,𝐻,,𝑖,𝑝,𝑠,𝑡   𝑓,𝑉,𝑖,𝑝,𝑠,𝑡   𝑓,𝑊,,𝑖,𝑝,𝑠,𝑡   𝑓,𝐼,𝑠   𝑖,𝑂,𝑝,𝑡   𝑃,   𝑡, ·
Allowed substitution hints:   𝐴(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝐵(𝑡,𝑓,𝑖,𝑠,𝑝)   𝐶(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑃(𝑡,𝑓,𝑖,𝑠,𝑝)   𝑅(𝑡,𝑓,,𝑖,𝑠,𝑝)   𝑆(𝑡,𝑓,,𝑖,𝑠,𝑝)   · (𝑓,,𝑖,𝑠,𝑝)   𝑈(𝑖,𝑝)   𝐸()   𝐹(𝑓,,𝑖,𝑠,𝑝)   𝐺(𝑓,,𝑠)   𝐼(𝑡,,𝑖,𝑝)   𝐽(𝑓,𝑖,𝑠,𝑝)   (𝑡,𝑓,𝑖,𝑠,𝑝)   𝑁(,𝑖,𝑝)   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑡,𝑓,,𝑖,𝑠,𝑝)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = (𝑝𝐺))
2 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝𝐸)
4 dih1dimat.l . . . . . . . 8 = (le‘𝐾)
5 dih1dimat.c . . . . . . . 8 𝐶 = (Atoms‘𝐾)
6 dih1dimat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
7 dih1dimat.p . . . . . . . 8 𝑃 = ((oc‘𝐾)‘𝑊)
84, 5, 6, 7lhpocnel2 37334 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
92, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
10 simpl2r 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝐸)
11 simpl3 1190 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑠𝑂)
12 dih1dimat.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
13 dih1dimat.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . . 11 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dih1dimat.o . . . . . . . . . . 11 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
16 dih1dimat.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
17 dih1dimat.d . . . . . . . . . . 11 𝐹 = (Scalar‘𝑈)
18 dih1dimat.j . . . . . . . . . . 11 𝐽 = (invr𝐹)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 38419 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
2019simpld 498 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
212, 10, 11, 20syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝐽𝑠) ∈ 𝐸)
22 simpl2l 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑓𝑇)
236, 13, 14tendocl 38082 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
242, 21, 22, 23syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
254, 5, 6, 13ltrnel 37454 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
262, 24, 9, 25syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
27 dih1dimat.g . . . . . . 7 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
284, 5, 6, 13, 27ltrniotacl 37894 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → 𝐺𝑇)
292, 9, 26, 28syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺𝑇)
306, 13, 14tendocl 38082 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸𝐺𝑇) → (𝑝𝐺) ∈ 𝑇)
312, 3, 29, 30syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) ∈ 𝑇)
321, 31eqeltrd 2890 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖𝑇)
336, 14tendococl 38087 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
342, 3, 21, 33syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ (𝐽𝑠)) ∈ 𝐸)
35 simp1 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3683ad2ant1 1130 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
37203adant2l 1175 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
38 simp2l 1196 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝑓𝑇)
3935, 37, 38, 23syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
4035, 39, 36, 25syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
4135, 36, 40, 28syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺𝑇)
424, 5, 6, 13, 27ltrniotaval 37896 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
4335, 36, 40, 42syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
444, 5, 6, 13cdlemd 37522 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇) ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4535, 41, 39, 36, 43, 44syl311anc 1381 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → 𝐺 = ((𝐽𝑠)‘𝑓))
4645adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
4746fveq2d 6650 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
486, 13, 14tendocoval 38081 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
492, 3, 21, 22, 48syl121anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑝 ∘ (𝐽𝑠))‘𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
5047, 1, 493eqtr4d 2843 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
51 coass 6086 . . . . 5 ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠) = (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠))
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 38420 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
532, 10, 11, 52syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝐽𝑠) ∘ 𝑠) = ( I ↾ 𝑇))
5453coeq2d 5698 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = (𝑝 ∘ ( I ↾ 𝑇)))
556, 13, 14tendo1mulr 38086 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐸) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
562, 3, 55syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ( I ↾ 𝑇)) = 𝑝)
5754, 56eqtrd 2833 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → (𝑝 ∘ ((𝐽𝑠) ∘ 𝑠)) = 𝑝)
5851, 57syl5req 2846 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
59 fveq1 6645 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑓) = ((𝑝 ∘ (𝐽𝑠))‘𝑓))
6059eqeq2d 2809 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑖 = (𝑡𝑓) ↔ 𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓)))
61 coeq1 5693 . . . . . . 7 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑡𝑠) = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))
6261eqeq2d 2809 . . . . . 6 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → (𝑝 = (𝑡𝑠) ↔ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠)))
6360, 62anbi12d 633 . . . . 5 (𝑡 = (𝑝 ∘ (𝐽𝑠)) → ((𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) ↔ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))))
6463rspcev 3571 . . . 4 (((𝑝 ∘ (𝐽𝑠)) ∈ 𝐸 ∧ (𝑖 = ((𝑝 ∘ (𝐽𝑠))‘𝑓) ∧ 𝑝 = ((𝑝 ∘ (𝐽𝑠)) ∘ 𝑠))) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6534, 50, 58, 64syl12anc 835 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
6632, 3, 65jca31 518 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)) → ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
67 simp3r 1199 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑝 = (𝑡𝑠))
6867fveq1d 6648 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝‘((𝐽𝑠)‘𝑓)) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
69 simp1l1 1263 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
70 simp2 1134 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑡𝐸)
71 simpl2r 1224 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑠𝐸)
72713ad2ant1 1130 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝐸)
736, 14tendococl 38087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑠𝐸) → (𝑡𝑠) ∈ 𝐸)
7469, 70, 72, 73syl3anc 1368 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑠) ∈ 𝐸)
75 simp1l3 1265 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑠𝑂)
7669, 72, 75, 20syl3anc 1368 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝐽𝑠) ∈ 𝐸)
77 simpl2l 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝑓𝑇)
78773ad2ant1 1130 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑓𝑇)
796, 13, 14tendocoval 38081 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑡𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ∈ 𝐸) ∧ 𝑓𝑇) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
8069, 74, 76, 78, 79syl121anc 1372 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = ((𝑡𝑠)‘((𝐽𝑠)‘𝑓)))
81 coass 6086 . . . . . . . . 9 ((𝑡𝑠) ∘ (𝐽𝑠)) = (𝑡 ∘ (𝑠 ∘ (𝐽𝑠)))
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 38421 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8369, 72, 75, 82syl3anc 1368 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑠 ∘ (𝐽𝑠)) = ( I ↾ 𝑇))
8483coeq2d 5698 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = (𝑡 ∘ ( I ↾ 𝑇)))
856, 13, 14tendo1mulr 38086 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8669, 70, 85syl2anc 587 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ ( I ↾ 𝑇)) = 𝑡)
8784, 86eqtrd 2833 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡 ∘ (𝑠 ∘ (𝐽𝑠))) = 𝑡)
8881, 87syl5eq 2845 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → ((𝑡𝑠) ∘ (𝐽𝑠)) = 𝑡)
8988fveq1d 6648 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (((𝑡𝑠) ∘ (𝐽𝑠))‘𝑓) = (𝑡𝑓))
9068, 80, 893eqtr2rd 2840 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑡𝑓) = (𝑝‘((𝐽𝑠)‘𝑓)))
91 simp3l 1198 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑡𝑓))
9245adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → 𝐺 = ((𝐽𝑠)‘𝑓))
93923ad2ant1 1130 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝐺 = ((𝐽𝑠)‘𝑓))
9493fveq2d 6650 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → (𝑝𝐺) = (𝑝‘((𝐽𝑠)‘𝑓)))
9590, 91, 943eqtr4d 2843 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) ∧ 𝑡𝐸 ∧ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))) → 𝑖 = (𝑝𝐺))
9695rexlimdv3a 3245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ (𝑖𝑇𝑝𝐸)) → (∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)) → 𝑖 = (𝑝𝐺)))
9796impr 458 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑖 = (𝑝𝐺))
98 simprlr 779 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → 𝑝𝐸)
9997, 98jca 515 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) ∧ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))) → (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
10066, 99impbida 800 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   class class class wbr 5031   ↦ cmpt 5111   I cid 5425   ↾ cres 5522   ∘ ccom 5524  ‘cfv 6325  ℩crio 7093  Basecbs 16478  Scalarcsca 16563   ·𝑠 cvsca 16564  lecple 16567  occoc 16568  0gc0g 16708  invrcinvr 19421  LSubSpclss 19700  LSpanclspn 19740  LSAtomsclsa 36289  Atomscatm 36578  HLchlt 36665  LHypclh 37299  LTrncltrn 37416  trLctrl 37473  TEndoctendo 38067  DVecHcdvh 38393  DIsoHcdih 38543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36268 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-tpos 7878  df-undef 7925  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-0g 16710  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19501  df-oposet 36491  df-ol 36493  df-oml 36494  df-covers 36581  df-ats 36582  df-atl 36613  df-cvlat 36637  df-hlat 36666  df-llines 36813  df-lplanes 36814  df-lvols 36815  df-lines 36816  df-psubsp 36818  df-pmap 36819  df-padd 37111  df-lhyp 37303  df-laut 37304  df-ldil 37419  df-ltrn 37420  df-trl 37474  df-tendo 38070  df-edring 38072  df-dvech 38394 This theorem is referenced by:  dih1dimatlem  38644
 Copyright terms: Public domain W3C validator