| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcoabs | Structured version Visualization version GIF version | ||
| Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.) |
| Ref | Expression |
|---|---|
| trlcoabs.l | ⊢ ≤ = (le‘𝐾) |
| trlcoabs.j | ⊢ ∨ = (join‘𝐾) |
| trlcoabs.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trlcoabs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlcoabs.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlcoabs.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlcoabs | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlcoabs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | trlcoabs.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | trlcoabs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | trlcoabs.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | ltrncoval 40164 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
| 6 | 5 | 3adant3r 1182 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
| 7 | 6 | oveq1d 7420 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
| 8 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
| 10 | 1, 2, 3, 4 | ltrnel 40158 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 11 | 10 | 3adant2l 1179 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 12 | trlcoabs.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 13 | trlcoabs.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 14 | 1, 12, 2, 3, 4, 13 | trljat3 40187 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
| 15 | 8, 9, 11, 14 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
| 16 | 7, 15 | eqtr4d 2773 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 lecple 17278 joincjn 18323 Atomscatm 39281 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 trLctrl 40177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 |
| This theorem is referenced by: cdlemk48 40969 |
| Copyright terms: Public domain | W3C validator |