Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcoabs | Structured version Visualization version GIF version |
Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.) |
Ref | Expression |
---|---|
trlcoabs.l | ⊢ ≤ = (le‘𝐾) |
trlcoabs.j | ⊢ ∨ = (join‘𝐾) |
trlcoabs.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlcoabs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcoabs.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcoabs.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcoabs | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlcoabs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | trlcoabs.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | trlcoabs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | trlcoabs.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | ltrncoval 38359 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
6 | 5 | 3adant3r 1181 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
7 | 6 | oveq1d 7322 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
8 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | simp2l 1199 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
10 | 1, 2, 3, 4 | ltrnel 38353 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
11 | 10 | 3adant2l 1178 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
12 | trlcoabs.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
13 | trlcoabs.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
14 | 1, 12, 2, 3, 4, 13 | trljat3 38382 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
15 | 8, 9, 11, 14 | syl3anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
16 | 7, 15 | eqtr4d 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ∘ ccom 5604 ‘cfv 6458 (class class class)co 7307 lecple 17018 joincjn 18078 Atomscatm 37477 HLchlt 37564 LHypclh 38198 LTrncltrn 38315 trLctrl 38372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-map 8648 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-p1 18193 df-lat 18199 df-clat 18266 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 df-psubsp 37717 df-pmap 37718 df-padd 38010 df-lhyp 38202 df-laut 38203 df-ldil 38318 df-ltrn 38319 df-trl 38373 |
This theorem is referenced by: cdlemk48 39164 |
Copyright terms: Public domain | W3C validator |