Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcoabs | Structured version Visualization version GIF version |
Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.) |
Ref | Expression |
---|---|
trlcoabs.l | ⊢ ≤ = (le‘𝐾) |
trlcoabs.j | ⊢ ∨ = (join‘𝐾) |
trlcoabs.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlcoabs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcoabs.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcoabs.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcoabs | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlcoabs.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | trlcoabs.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | trlcoabs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | trlcoabs.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | ltrncoval 38138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
6 | 5 | 3adant3r 1179 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
7 | 6 | oveq1d 7283 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
8 | simp1 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | simp2l 1197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
10 | 1, 2, 3, 4 | ltrnel 38132 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
11 | 10 | 3adant2l 1176 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
12 | trlcoabs.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
13 | trlcoabs.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
14 | 1, 12, 2, 3, 4, 13 | trljat3 38161 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
15 | 8, 9, 11, 14 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑅‘𝐹))) |
16 | 7, 15 | eqtr4d 2782 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹 ∘ 𝐺)‘𝑃) ∨ (𝑅‘𝐹)) = ((𝐺‘𝑃) ∨ (𝑅‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ∘ ccom 5592 ‘cfv 6430 (class class class)co 7268 lecple 16950 joincjn 18010 Atomscatm 37256 HLchlt 37343 LHypclh 37977 LTrncltrn 38094 trLctrl 38151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-map 8591 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-psubsp 37496 df-pmap 37497 df-padd 37789 df-lhyp 37981 df-laut 37982 df-ldil 38097 df-ltrn 38098 df-trl 38152 |
This theorem is referenced by: cdlemk48 38943 |
Copyright terms: Public domain | W3C validator |