Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs Structured version   Visualization version   GIF version

Theorem trlcoabs 40105
Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
trlcoabs.l ≀ = (leβ€˜πΎ)
trlcoabs.j ∨ = (joinβ€˜πΎ)
trlcoabs.a 𝐴 = (Atomsβ€˜πΎ)
trlcoabs.h 𝐻 = (LHypβ€˜πΎ)
trlcoabs.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlcoabs.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlcoabs (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((𝐹 ∘ 𝐺)β€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)))

Proof of Theorem trlcoabs
StepHypRef Expression
1 trlcoabs.l . . . . 5 ≀ = (leβ€˜πΎ)
2 trlcoabs.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
3 trlcoabs.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 trlcoabs.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4ltrncoval 39529 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ ((𝐹 ∘ 𝐺)β€˜π‘ƒ) = (πΉβ€˜(πΊβ€˜π‘ƒ)))
653adant3r 1178 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘ƒ) = (πΉβ€˜(πΊβ€˜π‘ƒ)))
76oveq1d 7420 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((𝐹 ∘ 𝐺)β€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (π‘…β€˜πΉ)))
8 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
9 simp2l 1196 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
101, 2, 3, 4ltrnel 39523 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
11103adant2l 1175 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
12 trlcoabs.j . . . 4 ∨ = (joinβ€˜πΎ)
13 trlcoabs.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
141, 12, 2, 3, 4, 13trljat3 39552 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (π‘…β€˜πΉ)))
158, 9, 11, 14syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (π‘…β€˜πΉ)))
167, 15eqtr4d 2769 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((𝐹 ∘ 𝐺)β€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141   ∘ ccom 5673  β€˜cfv 6537  (class class class)co 7405  lecple 17213  joincjn 18276  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  cdlemk48  40334
  Copyright terms: Public domain W3C validator