![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncoat | Structured version Visualization version GIF version |
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 39313, ltrnat 39314 uses. (Contributed by NM, 1-May-2013.) |
Ref | Expression |
---|---|
ltrnel.l | β’ β€ = (leβπΎ) |
ltrnel.a | β’ π΄ = (AtomsβπΎ) |
ltrnel.h | β’ π» = (LHypβπΎ) |
ltrnel.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrncoat | β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΉβ(πΊβπ)) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΎ β HL β§ π β π»)) | |
2 | simp2l 1197 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β πΉ β π) | |
3 | ltrnel.l | . . . 4 β’ β€ = (leβπΎ) | |
4 | ltrnel.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | ltrnel.h | . . . 4 β’ π» = (LHypβπΎ) | |
6 | ltrnel.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
7 | 3, 4, 5, 6 | ltrnat 39314 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΊ β π β§ π β π΄) β (πΊβπ) β π΄) |
8 | 7 | 3adant2l 1176 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΊβπ) β π΄) |
9 | 3, 4, 5, 6 | ltrnat 39314 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (πΊβπ) β π΄) β (πΉβ(πΊβπ)) β π΄) |
10 | 1, 2, 8, 9 | syl3anc 1369 | 1 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΉβ(πΊβπ)) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 lecple 17208 Atomscatm 38436 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-plt 18287 df-glb 18304 df-p0 18382 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-hlat 38524 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 |
This theorem is referenced by: cdlemg9a 39806 cdlemg9 39808 cdlemg11aq 39812 cdlemg12a 39817 cdlemg12c 39819 cdlemg12f 39822 cdlemg12g 39823 cdlemg12 39824 cdlemg13a 39825 cdlemg13 39826 cdlemg17f 39840 cdlemg17g 39841 cdlemg17 39851 cdlemg19a 39857 cdlemg19 39858 |
Copyright terms: Public domain | W3C validator |