Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Structured version   Visualization version   GIF version

Theorem ltrncoat 37149
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 37144, ltrnat 37145 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1193 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐹𝑇)
3 ltrnel.l . . . 4 = (le‘𝐾)
4 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 4, 5, 6ltrnat 37145 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
873adant2l 1172 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
93, 4, 5, 6ltrnat 37145 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
101, 2, 8, 9syl3anc 1365 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  cfv 6351  lecple 16564  Atomscatm 36268  HLchlt 36355  LHypclh 36989  LTrncltrn 37106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8401  df-plt 17560  df-glb 17577  df-p0 17641  df-oposet 36181  df-ol 36183  df-oml 36184  df-covers 36271  df-ats 36272  df-hlat 36356  df-lhyp 36993  df-laut 36994  df-ldil 37109  df-ltrn 37110
This theorem is referenced by:  cdlemg9a  37637  cdlemg9  37639  cdlemg11aq  37643  cdlemg12a  37648  cdlemg12c  37650  cdlemg12f  37653  cdlemg12g  37654  cdlemg12  37655  cdlemg13a  37656  cdlemg13  37657  cdlemg17f  37671  cdlemg17g  37672  cdlemg17  37682  cdlemg19a  37688  cdlemg19  37689
  Copyright terms: Public domain W3C validator