Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Structured version   Visualization version   GIF version

Theorem ltrncoat 40121
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 40116, ltrnat 40117 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1199 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐹𝑇)
3 ltrnel.l . . . 4 = (le‘𝐾)
4 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 4, 5, 6ltrnat 40117 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
873adant2l 1178 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
93, 4, 5, 6ltrnat 40117 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
101, 2, 8, 9syl3anc 1372 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6541  lecple 17281  Atomscatm 39239  HLchlt 39326  LHypclh 39961  LTrncltrn 40078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-plt 18345  df-glb 18362  df-p0 18440  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-hlat 39327  df-lhyp 39965  df-laut 39966  df-ldil 40081  df-ltrn 40082
This theorem is referenced by:  cdlemg9a  40609  cdlemg9  40611  cdlemg11aq  40615  cdlemg12a  40620  cdlemg12c  40622  cdlemg12f  40625  cdlemg12g  40626  cdlemg12  40627  cdlemg13a  40628  cdlemg13  40629  cdlemg17f  40643  cdlemg17g  40644  cdlemg17  40654  cdlemg19a  40660  cdlemg19  40661
  Copyright terms: Public domain W3C validator