Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Structured version   Visualization version   GIF version

Theorem ltrncoat 39318
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 39313, ltrnat 39314 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrncoat (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴)

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp2l 1197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ 𝐹 ∈ 𝑇)
3 ltrnel.l . . . 4 ≀ = (leβ€˜πΎ)
4 ltrnel.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 ltrnel.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 ltrnel.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
73, 4, 5, 6ltrnat 39314 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
873adant2l 1176 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
93, 4, 5, 6ltrnat 39314 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴)
101, 2, 8, 9syl3anc 1369 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  β€˜cfv 6542  lecple 17208  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-plt 18287  df-glb 18304  df-p0 18382  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-hlat 38524  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279
This theorem is referenced by:  cdlemg9a  39806  cdlemg9  39808  cdlemg11aq  39812  cdlemg12a  39817  cdlemg12c  39819  cdlemg12f  39822  cdlemg12g  39823  cdlemg12  39824  cdlemg13a  39825  cdlemg13  39826  cdlemg17f  39840  cdlemg17g  39841  cdlemg17  39851  cdlemg19a  39857  cdlemg19  39858
  Copyright terms: Public domain W3C validator