Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl2 Structured version   Visualization version   GIF version

Theorem tendoplcl2 39054
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHypβ€˜πΎ)
tendopl.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendopl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendopl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendoplcl2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) ∈ 𝑇)
Distinct variable groups:   𝑑,𝑠,𝐸   𝑓,𝑠,𝑑,𝑇   𝑓,π‘Š,𝑠,𝑑
Allowed substitution hints:   𝑃(𝑑,𝑓,𝑠)   π‘ˆ(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑑,𝑓,𝑠)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑉(𝑑,𝑓,𝑠)

Proof of Theorem tendoplcl2
StepHypRef Expression
1 tendopl.p . . . . 5 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
2 tendopl.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
31, 2tendopl2 39053 . . . 4 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) = ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)))
433expa 1117 . . 3 (((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) = ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)))
543adant1 1129 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) = ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)))
6 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 tendopl.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
8 tendopl.e . . . . 5 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
97, 2, 8tendocl 39043 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ (π‘ˆβ€˜πΉ) ∈ 𝑇)
1093adant2r 1178 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ (π‘ˆβ€˜πΉ) ∈ 𝑇)
117, 2, 8tendocl 39043 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ (π‘‰β€˜πΉ) ∈ 𝑇)
12113adant2l 1177 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ (π‘‰β€˜πΉ) ∈ 𝑇)
137, 2ltrnco 38995 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆβ€˜πΉ) ∈ 𝑇 ∧ (π‘‰β€˜πΉ) ∈ 𝑇) β†’ ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)) ∈ 𝑇)
146, 10, 12, 13syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)) ∈ 𝑇)
155, 14eqeltrd 2837 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   ↦ cmpt 5175   ∘ ccom 5624  β€˜cfv 6479  (class class class)co 7337   ∈ cmpo 7339  HLchlt 37625  LHypclh 38260  LTrncltrn 38377  TEndoctendo 39028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-riotaBAD 37228
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-undef 8159  df-map 8688  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-p1 18241  df-lat 18247  df-clat 18314  df-oposet 37451  df-ol 37453  df-oml 37454  df-covers 37541  df-ats 37542  df-atl 37573  df-cvlat 37597  df-hlat 37626  df-llines 37774  df-lplanes 37775  df-lvols 37776  df-lines 37777  df-psubsp 37779  df-pmap 37780  df-padd 38072  df-lhyp 38264  df-laut 38265  df-ldil 38380  df-ltrn 38381  df-trl 38435  df-tendo 39031
This theorem is referenced by:  tendopltp  39056
  Copyright terms: Public domain W3C validator