Proof of Theorem ax5seglem1
Step | Hyp | Ref
| Expression |
1 | | simpl2l 1224 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
2 | | fveecn 27251 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
3 | 1, 2 | sylancom 587 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
4 | | simpl2r 1225 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
5 | | fveecn 27251 |
. . . . 5
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
6 | 4, 5 | sylancom 587 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
7 | | elicc01 13180 |
. . . . . . . . 9
⊢ (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤
𝑇 ∧ 𝑇 ≤ 1)) |
8 | 7 | simp1bi 1143 |
. . . . . . . 8
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℝ) |
9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → 𝑇 ∈ ℝ) |
10 | 9 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → 𝑇 ∈ ℝ) |
11 | 10 | recnd 10987 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → 𝑇 ∈ ℂ) |
12 | 11 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ) |
13 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
14 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
15 | 14 | oveq2d 7284 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴‘𝑖)) = ((1 − 𝑇) · (𝐴‘𝑗))) |
16 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
17 | 16 | oveq2d 7284 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑇 · (𝐶‘𝑖)) = (𝑇 · (𝐶‘𝑗))) |
18 | 15, 17 | oveq12d 7286 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
19 | 13, 18 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))) |
20 | 19 | rspccva 3559 |
. . . . . 6
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
21 | 20 | adantll 710 |
. . . . 5
⊢ (((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
22 | 21 | 3ad2antl3 1185 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
23 | | oveq2 7276 |
. . . . . 6
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → ((𝐴‘𝑗) − (𝐵‘𝑗)) = ((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))) |
24 | 23 | oveq1d 7283 |
. . . . 5
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → (((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = (((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))↑2)) |
25 | | subdi 11391 |
. . . . . . . . 9
⊢ ((𝑇 ∈ ℂ ∧ (𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → (𝑇 · ((𝐴‘𝑗) − (𝐶‘𝑗))) = ((𝑇 · (𝐴‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
26 | 25 | 3coml 1125 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · ((𝐴‘𝑗) − (𝐶‘𝑗))) = ((𝑇 · (𝐴‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
27 | | ax-1cn 10913 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
28 | | subcl 11203 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − 𝑇) ∈ ℂ) |
29 | 27, 28 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ ℂ → (1
− 𝑇) ∈
ℂ) |
30 | 29 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈
ℂ) |
31 | | simpl 482 |
. . . . . . . . . . . 12
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴‘𝑗) ∈ ℂ) |
32 | | subdir 11392 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ (1 − 𝑇) ∈ ℂ ∧ (𝐴‘𝑗) ∈ ℂ) → ((1 − (1
− 𝑇)) · (𝐴‘𝑗)) = ((1 · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐴‘𝑗)))) |
33 | 27, 30, 31, 32 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1
− 𝑇)) · (𝐴‘𝑗)) = ((1 · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐴‘𝑗)))) |
34 | | nncan 11233 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) |
35 | 27, 34 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ ℂ → (1
− (1 − 𝑇)) =
𝑇) |
36 | 35 | oveq1d 7283 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ ℂ → ((1
− (1 − 𝑇))
· (𝐴‘𝑗)) = (𝑇 · (𝐴‘𝑗))) |
37 | 36 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1
− 𝑇)) · (𝐴‘𝑗)) = (𝑇 · (𝐴‘𝑗))) |
38 | | mulid2 10958 |
. . . . . . . . . . . . 13
⊢ ((𝐴‘𝑗) ∈ ℂ → (1 · (𝐴‘𝑗)) = (𝐴‘𝑗)) |
39 | 38 | oveq1d 7283 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑗) ∈ ℂ → ((1 · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐴‘𝑗))) = ((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗)))) |
40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐴‘𝑗))) = ((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗)))) |
41 | 33, 37, 40 | 3eqtr3rd 2788 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗))) = (𝑇 · (𝐴‘𝑗))) |
42 | 41 | oveq1d 7283 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗))) − (𝑇 · (𝐶‘𝑗))) = ((𝑇 · (𝐴‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
43 | 42 | 3adant2 1129 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗))) − (𝑇 · (𝐶‘𝑗))) = ((𝑇 · (𝐴‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
44 | | simp1 1134 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴‘𝑗) ∈ ℂ) |
45 | | mulcl 10939 |
. . . . . . . . . . . 12
⊢ (((1
− 𝑇) ∈ ℂ
∧ (𝐴‘𝑗) ∈ ℂ) → ((1
− 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
46 | 29, 45 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ ℂ ∧ (𝐴‘𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
47 | 46 | ancoms 458 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
48 | 47 | 3adant2 1129 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
49 | | mulcl 10939 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → (𝑇 · (𝐶‘𝑗)) ∈ ℂ) |
50 | 49 | ancoms 458 |
. . . . . . . . . 10
⊢ (((𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶‘𝑗)) ∈ ℂ) |
51 | 50 | 3adant1 1128 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶‘𝑗)) ∈ ℂ) |
52 | 44, 48, 51 | subsub4d 11346 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴‘𝑗) − ((1 − 𝑇) · (𝐴‘𝑗))) − (𝑇 · (𝐶‘𝑗))) = ((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))) |
53 | 26, 43, 52 | 3eqtr2rd 2786 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) = (𝑇 · ((𝐴‘𝑗) − (𝐶‘𝑗)))) |
54 | 53 | oveq1d 7283 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))↑2) = ((𝑇 · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2)) |
55 | | simp3 1136 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ) |
56 | | subcl 11203 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
57 | 56 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
58 | 55, 57 | sqmuld 13857 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝑇 · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2) = ((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
59 | 54, 58 | eqtrd 2779 |
. . . . 5
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴‘𝑗) − (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))↑2) = ((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
60 | 24, 59 | sylan9eqr 2801 |
. . . 4
⊢ ((((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) → (((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = ((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
61 | 3, 6, 12, 22, 60 | syl31anc 1371 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = ((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
62 | 61 | sumeq2dv 15396 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
63 | | fzfid 13674 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (1...𝑁) ∈ Fin) |
64 | 8 | resqcld 13946 |
. . . . . 6
⊢ (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈
ℝ) |
65 | 64 | recnd 10987 |
. . . . 5
⊢ (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈
ℂ) |
66 | 65 | adantr 480 |
. . . 4
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝑇↑2) ∈ ℂ) |
67 | 66 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (𝑇↑2) ∈ ℂ) |
68 | 2 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
69 | 68 | 3adant2r 1177 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
70 | 5 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
71 | 70 | 3adant2l 1176 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
72 | 69, 71 | subcld 11315 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
73 | 72 | sqcld 13843 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
74 | 73 | 3expa 1116 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
75 | 74 | 3adantl3 1166 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
76 | 63, 67, 75 | fsummulc2 15477 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
77 | 62, 76 | eqtr4d 2782 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |