MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem1 Structured version   Visualization version   GIF version

Theorem ax5seglem1 26720
Description: Lemma for ax5seg 26730. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem1
StepHypRef Expression
1 simpl2l 1223 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 fveecn 26694 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
31, 2sylancom 591 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
4 simpl2r 1224 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 fveecn 26694 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
64, 5sylancom 591 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7 elicc01 12844 . . . . . . . . 9 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
87simp1bi 1142 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
98adantr 484 . . . . . . 7 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝑇 ∈ ℝ)
1093ad2ant3 1132 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℝ)
1110recnd 10658 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
1211adantr 484 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
13 fveq2 6652 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
14 fveq2 6652 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
1514oveq2d 7156 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
16 fveq2 6652 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
1716oveq2d 7156 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
1815, 17oveq12d 7158 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
1913, 18eqeq12d 2838 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2019rspccva 3597 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2120adantll 713 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
22213ad2antl3 1184 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
23 oveq2 7148 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐴𝑗) − (𝐵𝑗)) = ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2423oveq1d 7155 . . . . 5 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐴𝑗) − (𝐵𝑗))↑2) = (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2))
25 subdi 11062 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝑇 · ((𝐴𝑗) − (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
26253coml 1124 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · ((𝐴𝑗) − (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
27 ax-1cn 10584 . . . . . . . . . . . 12 1 ∈ ℂ
28 subcl 10874 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2927, 28mpan 689 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3029adantl 485 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
31 simpl 486 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
32 subdir 11063 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))))
3327, 30, 31, 32mp3an2i 1463 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))))
34 nncan 10904 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
3527, 34mpan 689 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
3635oveq1d 7155 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = (𝑇 · (𝐴𝑗)))
3736adantl 485 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = (𝑇 · (𝐴𝑗)))
38 mulid2 10629 . . . . . . . . . . . . 13 ((𝐴𝑗) ∈ ℂ → (1 · (𝐴𝑗)) = (𝐴𝑗))
3938oveq1d 7155 . . . . . . . . . . . 12 ((𝐴𝑗) ∈ ℂ → ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))) = ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))))
4039adantr 484 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))) = ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))))
4133, 37, 403eqtr3rd 2866 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) = (𝑇 · (𝐴𝑗)))
4241oveq1d 7155 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
43423adant2 1128 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
44 simp1 1133 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
45 mulcl 10610 . . . . . . . . . . . 12 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
4629, 45sylan 583 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
4746ancoms 462 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
48473adant2 1128 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
49 mulcl 10610 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
5049ancoms 462 . . . . . . . . . 10 (((𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
51503adant1 1127 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
5244, 48, 51subsub4d 11017 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
5326, 43, 523eqtr2rd 2864 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) = (𝑇 · ((𝐴𝑗) − (𝐶𝑗))))
5453oveq1d 7155 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2) = ((𝑇 · ((𝐴𝑗) − (𝐶𝑗)))↑2))
55 simp3 1135 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
56 subcl 10874 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
57563adant3 1129 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
5855, 57sqmuld 13518 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝑇 · ((𝐴𝑗) − (𝐶𝑗)))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5954, 58eqtrd 2857 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
6024, 59sylan9eqr 2879 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
613, 6, 12, 22, 60syl31anc 1370 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
6261sumeq2dv 15051 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
63 fzfid 13336 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
648resqcld 13607 . . . . . 6 (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈ ℝ)
6564recnd 10658 . . . . 5 (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈ ℂ)
6665adantr 484 . . . 4 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝑇↑2) ∈ ℂ)
67663ad2ant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇↑2) ∈ ℂ)
6823adant1 1127 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
69683adant2r 1176 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
7053adant1 1127 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
71703adant2l 1175 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7269, 71subcld 10986 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
7372sqcld 13504 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
74733expa 1115 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
75743adantl3 1165 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
7663, 67, 75fsummulc2 15130 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
7762, 76eqtr4d 2860 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859  cn 11625  2c2 11680  [,]cicc 12729  ...cfz 12885  cexp 13425  Σcsu 15033  𝔼cee 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-ee 26683
This theorem is referenced by:  ax5seglem3  26723  ax5seglem6  26726
  Copyright terms: Public domain W3C validator