Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Visualization version   GIF version

Theorem athgt 39450
Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j = (join‘𝐾)
athgt.c 𝐶 = ( ⋖ ‘𝐾)
athgt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
athgt (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑟,𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem athgt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2729 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2729 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt4 39382 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))
6 simpl1 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝐾 ∈ HL)
7 hlop 39355 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 3op0cl 39177 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
96, 7, 83syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾) ∈ (Base‘𝐾))
10 simpl2l 1227 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝑥 ∈ (Base‘𝐾))
11 simprll 778 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾)(lt‘𝐾)𝑥)
12 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
13 athgt.j . . . . . . . . . 10 = (join‘𝐾)
14 athgt.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
15 athgt.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
161, 12, 2, 13, 14, 15hlrelat3 39406 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)(lt‘𝐾)𝑥) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
176, 9, 10, 11, 16syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
18 simp11 1204 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
19 simp3 1138 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝𝐴)
203, 14, 15atcvr0 39281 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
22 hlol 39354 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OL)
2318, 22syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
241, 15atbase 39282 . . . . . . . . . . . . . . 15 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
25243ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝 ∈ (Base‘𝐾))
261, 13, 3olj02 39219 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑝 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑝) = 𝑝)
2723, 25, 26syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → ((0.‘𝐾) 𝑝) = 𝑝)
2821, 27breqtrrd 5135 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶((0.‘𝐾) 𝑝))
2928biantrurd 532 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥 ↔ ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥)))
3027breq1d 5117 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥𝑝(le‘𝐾)𝑥))
3129, 30bitr3d 281 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
32313expa 1118 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
3332rexbidva 3155 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ ∃𝑝𝐴 𝑝(le‘𝐾)𝑥))
3417, 33mpbid 232 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 𝑝(le‘𝐾)𝑥)
35 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ HL)
36253adant3r 1182 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝 ∈ (Base‘𝐾))
37 simp12r 1288 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑦 ∈ (Base‘𝐾))
38 simp3r 1203 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(le‘𝐾)𝑥)
39 simp2lr 1242 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥(lt‘𝐾)𝑦)
40 hlpos 39359 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4135, 40syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ Poset)
42 simp12l 1287 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥 ∈ (Base‘𝐾))
431, 12, 2plelttr 18303 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4441, 36, 42, 37, 43syl13anc 1374 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4538, 39, 44mp2and 699 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(lt‘𝐾)𝑦)
461, 12, 2, 13, 14, 15hlrelat3 39406 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑝(lt‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
4735, 36, 37, 45, 46syl31anc 1375 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
48 simp11 1204 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ HL)
4948hllatd 39357 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Lat)
50 simp3ll 1245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝𝐴)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝 ∈ (Base‘𝐾))
52 simp3lr 1246 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞𝐴)
531, 15atbase 39282 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞 ∈ (Base‘𝐾))
551, 13latjcl 18398 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
5649, 51, 54, 55syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞) ∈ (Base‘𝐾))
57 simp13 1206 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑧 ∈ (Base‘𝐾))
58 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(le‘𝐾)𝑦)
59 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦(lt‘𝐾)𝑧)
6048, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Poset)
61 simp12 1205 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦 ∈ (Base‘𝐾))
621, 12, 2plelttr 18303 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ Poset ∧ ((𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾))) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6360, 56, 61, 57, 62syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6458, 59, 63mp2and 699 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(lt‘𝐾)𝑧)
651, 12, 2, 13, 14, 15hlrelat3 39406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑝 𝑞)(lt‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
6648, 56, 57, 64, 65syl31anc 1375 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
67 simp1ll 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ HL)
6867hllatd 39357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Lat)
69 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝𝐴)
7069, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝 ∈ (Base‘𝐾))
71 simp2lr 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞𝐴)
7271, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞 ∈ (Base‘𝐾))
7368, 70, 72, 55syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (𝑝 𝑞) ∈ (Base‘𝐾))
74 simp3l 1202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟𝐴)
751, 15atbase 39282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟 ∈ (Base‘𝐾))
771, 13latjcl 18398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
7868, 73, 76, 77syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
791, 4op1cl 39178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
8067, 7, 793syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (1.‘𝐾) ∈ (Base‘𝐾))
81 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)
82 simp1r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧(lt‘𝐾)(1.‘𝐾))
8367, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Poset)
84 simp1lr 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧 ∈ (Base‘𝐾))
851, 12, 2plelttr 18303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ Poset ∧ (((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾))) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8683, 78, 84, 80, 85syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8781, 82, 86mp2and 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾))
881, 12, 2, 13, 14, 15hlrelat3 39406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) ∧ ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
8967, 78, 80, 87, 88syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
90 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9190reximi 3067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
93923exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ((𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9493exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
9594ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
96953adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
97963imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
98973adant2l 1179 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9998imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
10099anim2d 612 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
101100reximdva 3146 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10266, 101mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
1031023exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
104103exp4a 431 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝𝐴𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
105104exp4a 431 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1061053adant2l 1179 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1071063imp1 1348 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
108107anim2d 612 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
109108reximdva 3146 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1101093adant2l 1179 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1111103adant3r 1182 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11247, 111mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1131123expia 1121 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ((𝑝𝐴𝑝(le‘𝐾)𝑥) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
114113expd 415 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (𝑝𝐴 → (𝑝(le‘𝐾)𝑥 → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
115114reximdvai 3144 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 𝑝(le‘𝐾)𝑥 → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11634, 115mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1171163exp1 1353 . . . . 5 (𝐾 ∈ HL → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
118117imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
119118rexlimdv 3132 . . 3 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
120119rexlimdvva 3194 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1215, 120mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  Posetcpo 18268  ltcplt 18269  joincjn 18272  0.cp0 18382  1.cp1 18383  Latclat 18390  OPcops 39165  OLcol 39167  ccvr 39255  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  3dim0  39451
  Copyright terms: Public domain W3C validator