Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Visualization version   GIF version

Theorem athgt 39423
Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j = (join‘𝐾)
athgt.c 𝐶 = ( ⋖ ‘𝐾)
athgt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
athgt (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑟,𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem athgt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2729 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2729 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt4 39355 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))
6 simpl1 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝐾 ∈ HL)
7 hlop 39328 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 3op0cl 39150 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
96, 7, 83syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾) ∈ (Base‘𝐾))
10 simpl2l 1227 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝑥 ∈ (Base‘𝐾))
11 simprll 778 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾)(lt‘𝐾)𝑥)
12 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
13 athgt.j . . . . . . . . . 10 = (join‘𝐾)
14 athgt.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
15 athgt.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
161, 12, 2, 13, 14, 15hlrelat3 39379 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)(lt‘𝐾)𝑥) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
176, 9, 10, 11, 16syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
18 simp11 1204 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
19 simp3 1138 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝𝐴)
203, 14, 15atcvr0 39254 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
22 hlol 39327 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OL)
2318, 22syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
241, 15atbase 39255 . . . . . . . . . . . . . . 15 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
25243ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝 ∈ (Base‘𝐾))
261, 13, 3olj02 39192 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑝 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑝) = 𝑝)
2723, 25, 26syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → ((0.‘𝐾) 𝑝) = 𝑝)
2821, 27breqtrrd 5130 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶((0.‘𝐾) 𝑝))
2928biantrurd 532 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥 ↔ ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥)))
3027breq1d 5112 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥𝑝(le‘𝐾)𝑥))
3129, 30bitr3d 281 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
32313expa 1118 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
3332rexbidva 3155 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ ∃𝑝𝐴 𝑝(le‘𝐾)𝑥))
3417, 33mpbid 232 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 𝑝(le‘𝐾)𝑥)
35 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ HL)
36253adant3r 1182 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝 ∈ (Base‘𝐾))
37 simp12r 1288 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑦 ∈ (Base‘𝐾))
38 simp3r 1203 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(le‘𝐾)𝑥)
39 simp2lr 1242 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥(lt‘𝐾)𝑦)
40 hlpos 39332 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4135, 40syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ Poset)
42 simp12l 1287 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥 ∈ (Base‘𝐾))
431, 12, 2plelttr 18279 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4441, 36, 42, 37, 43syl13anc 1374 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4538, 39, 44mp2and 699 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(lt‘𝐾)𝑦)
461, 12, 2, 13, 14, 15hlrelat3 39379 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑝(lt‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
4735, 36, 37, 45, 46syl31anc 1375 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
48 simp11 1204 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ HL)
4948hllatd 39330 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Lat)
50 simp3ll 1245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝𝐴)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝 ∈ (Base‘𝐾))
52 simp3lr 1246 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞𝐴)
531, 15atbase 39255 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞 ∈ (Base‘𝐾))
551, 13latjcl 18374 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
5649, 51, 54, 55syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞) ∈ (Base‘𝐾))
57 simp13 1206 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑧 ∈ (Base‘𝐾))
58 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(le‘𝐾)𝑦)
59 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦(lt‘𝐾)𝑧)
6048, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Poset)
61 simp12 1205 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦 ∈ (Base‘𝐾))
621, 12, 2plelttr 18279 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ Poset ∧ ((𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾))) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6360, 56, 61, 57, 62syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6458, 59, 63mp2and 699 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(lt‘𝐾)𝑧)
651, 12, 2, 13, 14, 15hlrelat3 39379 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑝 𝑞)(lt‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
6648, 56, 57, 64, 65syl31anc 1375 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
67 simp1ll 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ HL)
6867hllatd 39330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Lat)
69 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝𝐴)
7069, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝 ∈ (Base‘𝐾))
71 simp2lr 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞𝐴)
7271, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞 ∈ (Base‘𝐾))
7368, 70, 72, 55syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (𝑝 𝑞) ∈ (Base‘𝐾))
74 simp3l 1202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟𝐴)
751, 15atbase 39255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟 ∈ (Base‘𝐾))
771, 13latjcl 18374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
7868, 73, 76, 77syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
791, 4op1cl 39151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
8067, 7, 793syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (1.‘𝐾) ∈ (Base‘𝐾))
81 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)
82 simp1r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧(lt‘𝐾)(1.‘𝐾))
8367, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Poset)
84 simp1lr 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧 ∈ (Base‘𝐾))
851, 12, 2plelttr 18279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ Poset ∧ (((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾))) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8683, 78, 84, 80, 85syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8781, 82, 86mp2and 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾))
881, 12, 2, 13, 14, 15hlrelat3 39379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) ∧ ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
8967, 78, 80, 87, 88syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
90 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9190reximi 3067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
93923exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ((𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9493exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
9594ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
96953adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
97963imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
98973adant2l 1179 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9998imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
10099anim2d 612 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
101100reximdva 3146 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10266, 101mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
1031023exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
104103exp4a 431 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝𝐴𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
105104exp4a 431 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1061053adant2l 1179 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1071063imp1 1348 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
108107anim2d 612 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
109108reximdva 3146 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1101093adant2l 1179 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1111103adant3r 1182 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11247, 111mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1131123expia 1121 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ((𝑝𝐴𝑝(le‘𝐾)𝑥) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
114113expd 415 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (𝑝𝐴 → (𝑝(le‘𝐾)𝑥 → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
115114reximdvai 3144 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 𝑝(le‘𝐾)𝑥 → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11634, 115mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1171163exp1 1353 . . . . 5 (𝐾 ∈ HL → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
118117imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
119118rexlimdv 3132 . . 3 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
120119rexlimdvva 3192 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1215, 120mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Posetcpo 18244  ltcplt 18245  joincjn 18248  0.cp0 18358  1.cp1 18359  Latclat 18366  OPcops 39138  OLcol 39140  ccvr 39228  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  3dim0  39424
  Copyright terms: Public domain W3C validator