Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Visualization version   GIF version

Theorem athgt 37919
Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j = (join‘𝐾)
athgt.c 𝐶 = ( ⋖ ‘𝐾)
athgt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
athgt (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑟,𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem athgt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2736 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2736 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt4 37851 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))
6 simpl1 1191 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝐾 ∈ HL)
7 hlop 37824 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 3op0cl 37646 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
96, 7, 83syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾) ∈ (Base‘𝐾))
10 simpl2l 1226 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝑥 ∈ (Base‘𝐾))
11 simprll 777 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾)(lt‘𝐾)𝑥)
12 eqid 2736 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
13 athgt.j . . . . . . . . . 10 = (join‘𝐾)
14 athgt.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
15 athgt.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
161, 12, 2, 13, 14, 15hlrelat3 37875 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)(lt‘𝐾)𝑥) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
176, 9, 10, 11, 16syl31anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
18 simp11 1203 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
19 simp3 1138 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝𝐴)
203, 14, 15atcvr0 37750 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
22 hlol 37823 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OL)
2318, 22syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
241, 15atbase 37751 . . . . . . . . . . . . . . 15 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
25243ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝 ∈ (Base‘𝐾))
261, 13, 3olj02 37688 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑝 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑝) = 𝑝)
2723, 25, 26syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → ((0.‘𝐾) 𝑝) = 𝑝)
2821, 27breqtrrd 5133 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶((0.‘𝐾) 𝑝))
2928biantrurd 533 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥 ↔ ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥)))
3027breq1d 5115 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥𝑝(le‘𝐾)𝑥))
3129, 30bitr3d 280 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
32313expa 1118 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
3332rexbidva 3173 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ ∃𝑝𝐴 𝑝(le‘𝐾)𝑥))
3417, 33mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 𝑝(le‘𝐾)𝑥)
35 simp11 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ HL)
36253adant3r 1181 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝 ∈ (Base‘𝐾))
37 simp12r 1287 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑦 ∈ (Base‘𝐾))
38 simp3r 1202 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(le‘𝐾)𝑥)
39 simp2lr 1241 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥(lt‘𝐾)𝑦)
40 hlpos 37828 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4135, 40syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ Poset)
42 simp12l 1286 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥 ∈ (Base‘𝐾))
431, 12, 2plelttr 18233 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4441, 36, 42, 37, 43syl13anc 1372 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4538, 39, 44mp2and 697 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(lt‘𝐾)𝑦)
461, 12, 2, 13, 14, 15hlrelat3 37875 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑝(lt‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
4735, 36, 37, 45, 46syl31anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
48 simp11 1203 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ HL)
4948hllatd 37826 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Lat)
50 simp3ll 1244 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝𝐴)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝 ∈ (Base‘𝐾))
52 simp3lr 1245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞𝐴)
531, 15atbase 37751 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞 ∈ (Base‘𝐾))
551, 13latjcl 18328 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
5649, 51, 54, 55syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞) ∈ (Base‘𝐾))
57 simp13 1205 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑧 ∈ (Base‘𝐾))
58 simp3r 1202 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(le‘𝐾)𝑦)
59 simp2l 1199 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦(lt‘𝐾)𝑧)
6048, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Poset)
61 simp12 1204 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦 ∈ (Base‘𝐾))
621, 12, 2plelttr 18233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ Poset ∧ ((𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾))) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6360, 56, 61, 57, 62syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6458, 59, 63mp2and 697 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(lt‘𝐾)𝑧)
651, 12, 2, 13, 14, 15hlrelat3 37875 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑝 𝑞)(lt‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
6648, 56, 57, 64, 65syl31anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
67 simp1ll 1236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ HL)
6867hllatd 37826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Lat)
69 simp2ll 1240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝𝐴)
7069, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝 ∈ (Base‘𝐾))
71 simp2lr 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞𝐴)
7271, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞 ∈ (Base‘𝐾))
7368, 70, 72, 55syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (𝑝 𝑞) ∈ (Base‘𝐾))
74 simp3l 1201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟𝐴)
751, 15atbase 37751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟 ∈ (Base‘𝐾))
771, 13latjcl 18328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
7868, 73, 76, 77syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
791, 4op1cl 37647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
8067, 7, 793syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (1.‘𝐾) ∈ (Base‘𝐾))
81 simp3r 1202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)
82 simp1r 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧(lt‘𝐾)(1.‘𝐾))
8367, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Poset)
84 simp1lr 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧 ∈ (Base‘𝐾))
851, 12, 2plelttr 18233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ Poset ∧ (((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾))) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8683, 78, 84, 80, 85syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8781, 82, 86mp2and 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾))
881, 12, 2, 13, 14, 15hlrelat3 37875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) ∧ ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
8967, 78, 80, 87, 88syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
90 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9190reximi 3087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
93923exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ((𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9493exp4a 432 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
9594ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
96953adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
97963imp 1111 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
98973adant2l 1178 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9998imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
10099anim2d 612 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
101100reximdva 3165 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10266, 101mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
1031023exp 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
104103exp4a 432 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝𝐴𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
105104exp4a 432 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1061053adant2l 1178 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1071063imp1 1347 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
108107anim2d 612 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
109108reximdva 3165 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1101093adant2l 1178 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1111103adant3r 1181 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11247, 111mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1131123expia 1121 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ((𝑝𝐴𝑝(le‘𝐾)𝑥) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
114113expd 416 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (𝑝𝐴 → (𝑝(le‘𝐾)𝑥 → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
115114reximdvai 3162 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 𝑝(le‘𝐾)𝑥 → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11634, 115mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1171163exp1 1352 . . . . 5 (𝐾 ∈ HL → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
118117imp 407 . . . 4 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
119118rexlimdv 3150 . . 3 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
120119rexlimdvva 3205 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1215, 120mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  Posetcpo 18196  ltcplt 18197  joincjn 18200  0.cp0 18312  1.cp1 18313  Latclat 18320  OPcops 37634  OLcol 37636  ccvr 37724  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  3dim0  37920
  Copyright terms: Public domain W3C validator