Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoelN Structured version   Visualization version   GIF version

Theorem ltrncoelN 39317
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 39313 uses. (Contributed by NM, 1-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrncoelN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴 ∧ Β¬ (πΉβ€˜(πΊβ€˜π‘ƒ)) ≀ π‘Š))

Proof of Theorem ltrncoelN
StepHypRef Expression
1 simp1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp2l 1197 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
3 ltrnel.l . . . 4 ≀ = (leβ€˜πΎ)
4 ltrnel.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 ltrnel.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 ltrnel.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
73, 4, 5, 6ltrnel 39313 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
873adant2l 1176 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
93, 4, 5, 6ltrnel 39313 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴 ∧ Β¬ (πΉβ€˜(πΊβ€˜π‘ƒ)) ≀ π‘Š))
101, 2, 8, 9syl3anc 1369 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴 ∧ Β¬ (πΉβ€˜(πΊβ€˜π‘ƒ)) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β€˜cfv 6542  lecple 17208  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-glb 18304  df-p0 18382  df-lat 18389  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator