| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncoelN | Structured version Visualization version GIF version | ||
| Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 40104 uses. (Contributed by NM, 1-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncoelN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑃)) ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2l 1200 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
| 3 | ltrnel.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | ltrnel 40104 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 8 | 7 | 3adant2l 1179 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 9 | 3, 4, 5, 6 | ltrnel 40104 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑃)) ≤ 𝑊)) |
| 10 | 1, 2, 8, 9 | syl3anc 1373 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑃)) ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 lecple 17276 Atomscatm 39227 HLchlt 39314 LHypclh 39949 LTrncltrn 40066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-proset 18304 df-poset 18323 df-plt 18338 df-glb 18355 df-p0 18433 df-lat 18440 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |