MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem2 Structured version   Visualization version   GIF version

Theorem ax5seglem2 26709
Description: Lemma for ax5seg 26718. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1222 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 fveecn 26682 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
31, 2sylancom 590 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
4 simpl2r 1223 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 fveecn 26682 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
64, 5sylancom 590 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7 elicc01 12848 . . . . . . . . 9 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
87simp1bi 1141 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
98recnd 10663 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
109adantr 483 . . . . . 6 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝑇 ∈ ℂ)
11103ad2ant3 1131 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
1211adantr 483 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
13 fveq2 6665 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
14 fveq2 6665 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
1514oveq2d 7166 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
16 fveq2 6665 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
1716oveq2d 7166 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
1815, 17oveq12d 7168 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
1913, 18eqeq12d 2837 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2019rspccva 3622 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2120adantll 712 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
22213ad2antl3 1183 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
23 oveq1 7157 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐶𝑗)) = ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)))
2423oveq1d 7165 . . . . 5 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2))
25 ax-1cn 10589 . . . . . . . . . . . 12 1 ∈ ℂ
26 subcl 10879 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2725, 26mpan 688 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
28273ad2ant3 1131 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
29 simp1 1132 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
3028, 29mulcld 10655 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
31 simp3 1134 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
32 simp2 1133 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
3331, 32mulcld 10655 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
3430, 33, 32addsubassd 11011 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
35 subdi 11067 . . . . . . . . . . 11 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
3627, 35syl3an1 1159 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
37363coml 1123 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
38 subdir 11068 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
3925, 38mp3an1 1444 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
4039ancoms 461 . . . . . . . . . . . 12 (((𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
41403adant1 1126 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
42 mulid2 10634 . . . . . . . . . . . . 13 ((𝐶𝑗) ∈ ℂ → (1 · (𝐶𝑗)) = (𝐶𝑗))
4342oveq1d 7165 . . . . . . . . . . . 12 ((𝐶𝑗) ∈ ℂ → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
44433ad2ant2 1130 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4541, 44eqtrd 2856 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4645oveq2d 7166 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))))
4730, 32, 33subsub2d 11020 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4837, 46, 473eqtrd 2860 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4934, 48eqtr4d 2859 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))))
5049oveq1d 7165 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2))
51 subcl 10879 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
52513adant3 1128 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
5328, 52sqmuld 13516 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5450, 53eqtrd 2856 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5524, 54sylan9eqr 2878 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
563, 6, 12, 22, 55syl31anc 1369 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5756sumeq2dv 15054 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
58 fzfid 13335 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
59 1re 10635 . . . . . . . 8 1 ∈ ℝ
60 resubcl 10944 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
6159, 8, 60sylancr 589 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
6261resqcld 13605 . . . . . 6 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℝ)
6362recnd 10663 . . . . 5 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℂ)
6463adantr 483 . . . 4 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → ((1 − 𝑇)↑2) ∈ ℂ)
65643ad2ant3 1131 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇)↑2) ∈ ℂ)
6623adant1 1126 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
67663adant2r 1175 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
6853adant1 1126 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
69683adant2l 1174 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7067, 69subcld 10991 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
7170sqcld 13502 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
72713expa 1114 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
73723adantl3 1164 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
7458, 65, 73fsummulc2 15133 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
7557, 74eqtr4d 2859 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5059  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  cmin 10864  cn 11632  2c2 11686  [,]cicc 12735  ...cfz 12886  cexp 13423  Σcsu 15036  𝔼cee 26668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-ee 26671
This theorem is referenced by:  ax5seglem3  26711
  Copyright terms: Public domain W3C validator