Proof of Theorem ax5seglem2
Step | Hyp | Ref
| Expression |
1 | | simpl2l 1224 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
2 | | fveecn 27173 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
3 | 1, 2 | sylancom 587 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
4 | | simpl2r 1225 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
5 | | fveecn 27173 |
. . . . 5
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
6 | 4, 5 | sylancom 587 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
7 | | elicc01 13127 |
. . . . . . . . 9
⊢ (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤
𝑇 ∧ 𝑇 ≤ 1)) |
8 | 7 | simp1bi 1143 |
. . . . . . . 8
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℝ) |
9 | 8 | recnd 10934 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℂ) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → 𝑇 ∈ ℂ) |
11 | 10 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → 𝑇 ∈ ℂ) |
12 | 11 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ) |
13 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
14 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
15 | 14 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴‘𝑖)) = ((1 − 𝑇) · (𝐴‘𝑗))) |
16 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
17 | 16 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑇 · (𝐶‘𝑖)) = (𝑇 · (𝐶‘𝑗))) |
18 | 15, 17 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
19 | 13, 18 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))) |
20 | 19 | rspccva 3551 |
. . . . . 6
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
21 | 20 | adantll 710 |
. . . . 5
⊢ (((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
22 | 21 | 3ad2antl3 1185 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
23 | | oveq1 7262 |
. . . . . 6
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → ((𝐵‘𝑗) − (𝐶‘𝑗)) = ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))) |
24 | 23 | oveq1d 7270 |
. . . . 5
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2)) |
25 | | ax-1cn 10860 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
26 | | subcl 11150 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − 𝑇) ∈ ℂ) |
27 | 25, 26 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ ℂ → (1
− 𝑇) ∈
ℂ) |
28 | 27 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈
ℂ) |
29 | | simp1 1134 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴‘𝑗) ∈ ℂ) |
30 | 28, 29 | mulcld 10926 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
31 | | simp3 1136 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ) |
32 | | simp2 1135 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐶‘𝑗) ∈ ℂ) |
33 | 31, 32 | mulcld 10926 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶‘𝑗)) ∈ ℂ) |
34 | 30, 33, 32 | addsubassd 11282 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗)) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
35 | | subdi 11338 |
. . . . . . . . . . 11
⊢ (((1
− 𝑇) ∈ ℂ
∧ (𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
36 | 27, 35 | syl3an1 1161 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ ℂ ∧ (𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
37 | 36 | 3coml 1125 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
38 | | subdir 11339 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
39 | 25, 38 | mp3an1 1446 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
40 | 39 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
41 | 40 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
42 | | mulid2 10905 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘𝑗) ∈ ℂ → (1 · (𝐶‘𝑗)) = (𝐶‘𝑗)) |
43 | 42 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((𝐶‘𝑗) ∈ ℂ → ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗))) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
44 | 43 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗))) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
45 | 41, 44 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
46 | 45 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗))))) |
47 | 30, 32, 33 | subsub2d 11291 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴‘𝑗)) − ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
48 | 37, 46, 47 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
49 | 34, 48 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗)) = ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))) |
50 | 49 | oveq1d 7270 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2) = (((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2)) |
51 | | subcl 11150 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
52 | 51 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
53 | 28, 52 | sqmuld 13804 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
54 | 50, 53 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
55 | 24, 54 | sylan9eqr 2801 |
. . . 4
⊢ ((((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
56 | 3, 6, 12, 22, 55 | syl31anc 1371 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
57 | 56 | sumeq2dv 15343 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
58 | | fzfid 13621 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (1...𝑁) ∈ Fin) |
59 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
60 | | resubcl 11215 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
61 | 59, 8, 60 | sylancr 586 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
ℝ) |
62 | 61 | resqcld 13893 |
. . . . . 6
⊢ (𝑇 ∈ (0[,]1) → ((1
− 𝑇)↑2) ∈
ℝ) |
63 | 62 | recnd 10934 |
. . . . 5
⊢ (𝑇 ∈ (0[,]1) → ((1
− 𝑇)↑2) ∈
ℂ) |
64 | 63 | adantr 480 |
. . . 4
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → ((1 − 𝑇)↑2) ∈ ℂ) |
65 | 64 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → ((1 − 𝑇)↑2) ∈ ℂ) |
66 | 2 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
67 | 66 | 3adant2r 1177 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
68 | 5 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
69 | 68 | 3adant2l 1176 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
70 | 67, 69 | subcld 11262 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
71 | 70 | sqcld 13790 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
72 | 71 | 3expa 1116 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
73 | 72 | 3adantl3 1166 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
74 | 58, 65, 73 | fsummulc2 15424 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
75 | 57, 74 | eqtr4d 2781 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |