MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem2 Structured version   Visualization version   GIF version

Theorem ax5seglem2 26723
Description: Lemma for ax5seg 26732. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1223 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 fveecn 26696 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
31, 2sylancom 591 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
4 simpl2r 1224 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 fveecn 26696 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
64, 5sylancom 591 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7 elicc01 12844 . . . . . . . . 9 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
87simp1bi 1142 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
98recnd 10658 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
109adantr 484 . . . . . 6 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝑇 ∈ ℂ)
11103ad2ant3 1132 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
1211adantr 484 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
13 fveq2 6645 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
14 fveq2 6645 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
1514oveq2d 7151 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
16 fveq2 6645 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
1716oveq2d 7151 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
1815, 17oveq12d 7153 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
1913, 18eqeq12d 2814 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2019rspccva 3570 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2120adantll 713 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
22213ad2antl3 1184 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
23 oveq1 7142 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐶𝑗)) = ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)))
2423oveq1d 7150 . . . . 5 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2))
25 ax-1cn 10584 . . . . . . . . . . . 12 1 ∈ ℂ
26 subcl 10874 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2725, 26mpan 689 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
28273ad2ant3 1132 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
29 simp1 1133 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
3028, 29mulcld 10650 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
31 simp3 1135 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
32 simp2 1134 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
3331, 32mulcld 10650 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
3430, 33, 32addsubassd 11006 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
35 subdi 11062 . . . . . . . . . . 11 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
3627, 35syl3an1 1160 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
37363coml 1124 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
38 subdir 11063 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
3925, 38mp3an1 1445 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
4039ancoms 462 . . . . . . . . . . . 12 (((𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
41403adant1 1127 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
42 mulid2 10629 . . . . . . . . . . . . 13 ((𝐶𝑗) ∈ ℂ → (1 · (𝐶𝑗)) = (𝐶𝑗))
4342oveq1d 7150 . . . . . . . . . . . 12 ((𝐶𝑗) ∈ ℂ → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
44433ad2ant2 1131 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4541, 44eqtrd 2833 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4645oveq2d 7151 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))))
4730, 32, 33subsub2d 11015 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4837, 46, 473eqtrd 2837 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4934, 48eqtr4d 2836 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))))
5049oveq1d 7150 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2))
51 subcl 10874 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
52513adant3 1129 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
5328, 52sqmuld 13518 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5450, 53eqtrd 2833 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5524, 54sylan9eqr 2855 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
563, 6, 12, 22, 55syl31anc 1370 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5756sumeq2dv 15052 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
58 fzfid 13336 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
59 1re 10630 . . . . . . . 8 1 ∈ ℝ
60 resubcl 10939 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
6159, 8, 60sylancr 590 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
6261resqcld 13607 . . . . . 6 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℝ)
6362recnd 10658 . . . . 5 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℂ)
6463adantr 484 . . . 4 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → ((1 − 𝑇)↑2) ∈ ℂ)
65643ad2ant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇)↑2) ∈ ℂ)
6623adant1 1127 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
67663adant2r 1176 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
6853adant1 1127 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
69683adant2l 1175 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7067, 69subcld 10986 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
7170sqcld 13504 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
72713expa 1115 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
73723adantl3 1165 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
7458, 65, 73fsummulc2 15131 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
7557, 74eqtr4d 2836 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859  cn 11625  2c2 11680  [,]cicc 12729  ...cfz 12885  cexp 13425  Σcsu 15034  𝔼cee 26682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ee 26685
This theorem is referenced by:  ax5seglem3  26725
  Copyright terms: Public domain W3C validator