Proof of Theorem ax5seglem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl2l 1227 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
| 2 | | fveecn 28886 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
| 3 | 1, 2 | sylancom 588 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
| 4 | | simpl2r 1228 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
| 5 | | fveecn 28886 |
. . . . 5
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
| 6 | 4, 5 | sylancom 588 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
| 7 | | elicc01 13488 |
. . . . . . . . 9
⊢ (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤
𝑇 ∧ 𝑇 ≤ 1)) |
| 8 | 7 | simp1bi 1145 |
. . . . . . . 8
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℝ) |
| 9 | 8 | recnd 11268 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℂ) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → 𝑇 ∈ ℂ) |
| 11 | 10 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → 𝑇 ∈ ℂ) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ) |
| 13 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
| 14 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
| 15 | 14 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴‘𝑖)) = ((1 − 𝑇) · (𝐴‘𝑗))) |
| 16 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
| 17 | 16 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑇 · (𝐶‘𝑖)) = (𝑇 · (𝐶‘𝑗))) |
| 18 | 15, 17 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
| 19 | 13, 18 | eqeq12d 2752 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))))) |
| 20 | 19 | rspccva 3605 |
. . . . . 6
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
| 21 | 20 | adantll 714 |
. . . . 5
⊢ (((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
| 22 | 21 | 3ad2antl3 1188 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) |
| 23 | | oveq1 7417 |
. . . . . 6
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → ((𝐵‘𝑗) − (𝐶‘𝑗)) = ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))) |
| 24 | 23 | oveq1d 7425 |
. . . . 5
⊢ ((𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2)) |
| 25 | | ax-1cn 11192 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 26 | | subcl 11486 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − 𝑇) ∈ ℂ) |
| 27 | 25, 26 | mpan 690 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ ℂ → (1
− 𝑇) ∈
ℂ) |
| 28 | 27 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈
ℂ) |
| 29 | | simp1 1136 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴‘𝑗) ∈ ℂ) |
| 30 | 28, 29 | mulcld 11260 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴‘𝑗)) ∈ ℂ) |
| 31 | | simp3 1138 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ) |
| 32 | | simp2 1137 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐶‘𝑗) ∈ ℂ) |
| 33 | 31, 32 | mulcld 11260 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶‘𝑗)) ∈ ℂ) |
| 34 | 30, 33, 32 | addsubassd 11619 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗)) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
| 35 | | subdi 11675 |
. . . . . . . . . . 11
⊢ (((1
− 𝑇) ∈ ℂ
∧ (𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
| 36 | 27, 35 | syl3an1 1163 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ ℂ ∧ (𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
| 37 | 36 | 3coml 1127 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗)))) |
| 38 | | subdir 11676 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
| 39 | 25, 38 | mp3an1 1450 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
| 40 | 39 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
| 41 | 40 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗)))) |
| 42 | | mullid 11239 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘𝑗) ∈ ℂ → (1 · (𝐶‘𝑗)) = (𝐶‘𝑗)) |
| 43 | 42 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((𝐶‘𝑗) ∈ ℂ → ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗))) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
| 44 | 43 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐶‘𝑗)) − (𝑇 · (𝐶‘𝑗))) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
| 45 | 41, 44 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶‘𝑗)) = ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) |
| 46 | 45 | oveq2d 7426 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴‘𝑗)) − ((1 − 𝑇) · (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) − ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗))))) |
| 47 | 30, 32, 33 | subsub2d 11628 |
. . . . . . . . 9
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴‘𝑗)) − ((𝐶‘𝑗) − (𝑇 · (𝐶‘𝑗)))) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
| 48 | 37, 46, 47 | 3eqtrd 2775 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗))) = (((1 − 𝑇) · (𝐴‘𝑗)) + ((𝑇 · (𝐶‘𝑗)) − (𝐶‘𝑗)))) |
| 49 | 34, 48 | eqtr4d 2774 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗)) = ((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))) |
| 50 | 49 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2) = (((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2)) |
| 51 | | subcl 11486 |
. . . . . . . 8
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
| 52 | 51 | 3adant3 1132 |
. . . . . . 7
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
| 53 | 28, 52 | sqmuld 14181 |
. . . . . 6
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · ((𝐴‘𝑗) − (𝐶‘𝑗)))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 54 | 50, 53 | eqtrd 2771 |
. . . . 5
⊢ (((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗))) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 55 | 24, 54 | sylan9eqr 2793 |
. . . 4
⊢ ((((𝐴‘𝑗) ∈ ℂ ∧ (𝐶‘𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵‘𝑗) = (((1 − 𝑇) · (𝐴‘𝑗)) + (𝑇 · (𝐶‘𝑗)))) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 56 | 3, 6, 12, 22, 55 | syl31anc 1375 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 57 | 56 | sumeq2dv 15723 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 58 | | fzfid 13996 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (1...𝑁) ∈ Fin) |
| 59 | | 1re 11240 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 60 | | resubcl 11552 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
| 61 | 59, 8, 60 | sylancr 587 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
ℝ) |
| 62 | 61 | resqcld 14148 |
. . . . . 6
⊢ (𝑇 ∈ (0[,]1) → ((1
− 𝑇)↑2) ∈
ℝ) |
| 63 | 62 | recnd 11268 |
. . . . 5
⊢ (𝑇 ∈ (0[,]1) → ((1
− 𝑇)↑2) ∈
ℂ) |
| 64 | 63 | adantr 480 |
. . . 4
⊢ ((𝑇 ∈ (0[,]1) ∧
∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → ((1 − 𝑇)↑2) ∈ ℂ) |
| 65 | 64 | 3ad2ant3 1135 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → ((1 − 𝑇)↑2) ∈ ℂ) |
| 66 | 2 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
| 67 | 66 | 3adant2r 1180 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴‘𝑗) ∈ ℂ) |
| 68 | 5 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
| 69 | 68 | 3adant2l 1179 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶‘𝑗) ∈ ℂ) |
| 70 | 67, 69 | subcld 11599 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℂ) |
| 71 | 70 | sqcld 14167 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
| 72 | 71 | 3expa 1118 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
| 73 | 72 | 3adantl3 1169 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ∈ ℂ) |
| 74 | 58, 65, 73 | fsummulc2 15805 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |
| 75 | 57, 74 | eqtr4d 2774 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) |