MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem2 Structured version   Visualization version   GIF version

Theorem ax5seglem2 28892
Description: Lemma for ax5seg 28901. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1227 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 fveecn 28865 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
31, 2sylancom 588 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
4 simpl2r 1228 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 fveecn 28865 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
64, 5sylancom 588 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7 elicc01 13387 . . . . . . . . 9 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
87simp1bi 1145 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
98recnd 11162 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
109adantr 480 . . . . . 6 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝑇 ∈ ℂ)
11103ad2ant3 1135 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
1211adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
13 fveq2 6826 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
14 fveq2 6826 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
1514oveq2d 7369 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
16 fveq2 6826 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
1716oveq2d 7369 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
1815, 17oveq12d 7371 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
1913, 18eqeq12d 2745 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2019rspccva 3578 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2120adantll 714 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
22213ad2antl3 1188 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
23 oveq1 7360 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐶𝑗)) = ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)))
2423oveq1d 7368 . . . . 5 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2))
25 ax-1cn 11086 . . . . . . . . . . . 12 1 ∈ ℂ
26 subcl 11380 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2725, 26mpan 690 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
28273ad2ant3 1135 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
29 simp1 1136 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
3028, 29mulcld 11154 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
31 simp3 1138 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
32 simp2 1137 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
3331, 32mulcld 11154 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
3430, 33, 32addsubassd 11513 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
35 subdi 11571 . . . . . . . . . . 11 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
3627, 35syl3an1 1163 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
37363coml 1127 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))))
38 subdir 11572 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
3925, 38mp3an1 1450 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
4039ancoms 458 . . . . . . . . . . . 12 (((𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
41403adant1 1130 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))))
42 mullid 11133 . . . . . . . . . . . . 13 ((𝐶𝑗) ∈ ℂ → (1 · (𝐶𝑗)) = (𝐶𝑗))
4342oveq1d 7368 . . . . . . . . . . . 12 ((𝐶𝑗) ∈ ℂ → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
44433ad2ant2 1134 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑇 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4541, 44eqtrd 2764 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑇 · (𝐶𝑗))))
4645oveq2d 7369 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((1 − 𝑇) · (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))))
4730, 32, 33subsub2d 11522 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · (𝐴𝑗)) − ((𝐶𝑗) − (𝑇 · (𝐶𝑗)))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4837, 46, 473eqtrd 2768 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))) = (((1 − 𝑇) · (𝐴𝑗)) + ((𝑇 · (𝐶𝑗)) − (𝐶𝑗))))
4934, 48eqtr4d 2767 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗)) = ((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗))))
5049oveq1d 7368 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2))
51 subcl 11380 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
52513adant3 1132 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
5328, 52sqmuld 14083 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) · ((𝐴𝑗) − (𝐶𝑗)))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5450, 53eqtrd 2764 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5524, 54sylan9eqr 2786 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
563, 6, 12, 22, 55syl31anc 1375 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
5756sumeq2dv 15627 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
58 fzfid 13898 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
59 1re 11134 . . . . . . . 8 1 ∈ ℝ
60 resubcl 11446 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
6159, 8, 60sylancr 587 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
6261resqcld 14050 . . . . . 6 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℝ)
6362recnd 11162 . . . . 5 (𝑇 ∈ (0[,]1) → ((1 − 𝑇)↑2) ∈ ℂ)
6463adantr 480 . . . 4 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → ((1 − 𝑇)↑2) ∈ ℂ)
65643ad2ant3 1135 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇)↑2) ∈ ℂ)
6623adant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
67663adant2r 1180 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
6853adant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
69683adant2l 1179 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7067, 69subcld 11493 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
7170sqcld 14069 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
72713expa 1118 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
73723adantl3 1169 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
7458, 65, 73fsummulc2 15709 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(((1 − 𝑇)↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
7557, 74eqtr4d 2767 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  cn 12146  2c2 12201  [,]cicc 13269  ...cfz 13428  cexp 13986  Σcsu 15611  𝔼cee 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-ee 28854
This theorem is referenced by:  ax5seglem3  28894
  Copyright terms: Public domain W3C validator