Step | Hyp | Ref
| Expression |
1 | | pl1cn.k |
. 2
β’ πΎ = (Baseβπ
) |
2 | | eqid 2732 |
. 2
β’
(+gβπ
) = (+gβπ
) |
3 | | eqid 2732 |
. 2
β’
(.rβπ
) = (.rβπ
) |
4 | | eqid 2732 |
. 2
β’ ran
(eval1βπ
)
= ran (eval1βπ
) |
5 | 1 | fvexi 6902 |
. . . . . . . 8
β’ πΎ β V |
6 | 5 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β πΎ β V) |
7 | | fvexd 6903 |
. . . . . . 7
β’ (((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β§ π₯ β πΎ) β (πβπ₯) β V) |
8 | | fvexd 6903 |
. . . . . . 7
β’ (((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β§ π₯ β πΎ) β (πβπ₯) β V) |
9 | | simp1 1136 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π) |
10 | | eqid 2732 |
. . . . . . . . . . 11
β’ βͺ π½ =
βͺ π½ |
11 | 10, 10 | cnf 22741 |
. . . . . . . . . 10
β’ (π β (π½ Cn π½) β π:βͺ π½βΆβͺ π½) |
12 | 11 | ffnd 6715 |
. . . . . . . . 9
β’ (π β (π½ Cn π½) β π Fn βͺ π½) |
13 | 12 | 3ad2ant2 1134 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π Fn βͺ π½) |
14 | | pl1cn.2 |
. . . . . . . . . . . . 13
β’ (π β π
β TopRing) |
15 | | trgtgp 23663 |
. . . . . . . . . . . . 13
β’ (π
β TopRing β π
β TopGrp) |
16 | | pl1cn.j |
. . . . . . . . . . . . . 14
β’ π½ = (TopOpenβπ
) |
17 | 16, 1 | tgptopon 23577 |
. . . . . . . . . . . . 13
β’ (π
β TopGrp β π½ β (TopOnβπΎ)) |
18 | 14, 15, 17 | 3syl 18 |
. . . . . . . . . . . 12
β’ (π β π½ β (TopOnβπΎ)) |
19 | | toponuni 22407 |
. . . . . . . . . . . 12
β’ (π½ β (TopOnβπΎ) β πΎ = βͺ π½) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
β’ (π β πΎ = βͺ π½) |
21 | 20 | fneq2d 6640 |
. . . . . . . . . 10
β’ (π β (π Fn πΎ β π Fn βͺ π½)) |
22 | | dffn5 6947 |
. . . . . . . . . 10
β’ (π Fn πΎ β π = (π₯ β πΎ β¦ (πβπ₯))) |
23 | 21, 22 | bitr3di 285 |
. . . . . . . . 9
β’ (π β (π Fn βͺ π½ β π = (π₯ β πΎ β¦ (πβπ₯)))) |
24 | 23 | biimpa 477 |
. . . . . . . 8
β’ ((π β§ π Fn βͺ π½) β π = (π₯ β πΎ β¦ (πβπ₯))) |
25 | 9, 13, 24 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π = (π₯ β πΎ β¦ (πβπ₯))) |
26 | 10, 10 | cnf 22741 |
. . . . . . . . . 10
β’ (π β (π½ Cn π½) β π:βͺ π½βΆβͺ π½) |
27 | 26 | ffnd 6715 |
. . . . . . . . 9
β’ (π β (π½ Cn π½) β π Fn βͺ π½) |
28 | 27 | 3ad2ant3 1135 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π Fn βͺ π½) |
29 | 20 | fneq2d 6640 |
. . . . . . . . . 10
β’ (π β (π Fn πΎ β π Fn βͺ π½)) |
30 | | dffn5 6947 |
. . . . . . . . . 10
β’ (π Fn πΎ β π = (π₯ β πΎ β¦ (πβπ₯))) |
31 | 29, 30 | bitr3di 285 |
. . . . . . . . 9
β’ (π β (π Fn βͺ π½ β π = (π₯ β πΎ β¦ (πβπ₯)))) |
32 | 31 | biimpa 477 |
. . . . . . . 8
β’ ((π β§ π Fn βͺ π½) β π = (π₯ β πΎ β¦ (πβπ₯))) |
33 | 9, 28, 32 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π = (π₯ β πΎ β¦ (πβπ₯))) |
34 | 6, 7, 8, 25, 33 | offval2 7686 |
. . . . . 6
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π βf
(+gβπ
)π) = (π₯ β πΎ β¦ ((πβπ₯)(+gβπ
)(πβπ₯)))) |
35 | 18 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π½ β (TopOnβπΎ)) |
36 | | simp2 1137 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π β (π½ Cn π½)) |
37 | 25, 36 | eqeltrrd 2834 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π₯ β πΎ β¦ (πβπ₯)) β (π½ Cn π½)) |
38 | | simp3 1138 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β π β (π½ Cn π½)) |
39 | 33, 38 | eqeltrrd 2834 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π₯ β πΎ β¦ (πβπ₯)) β (π½ Cn π½)) |
40 | | eqid 2732 |
. . . . . . . . . 10
β’
(+πβπ
) = (+πβπ
) |
41 | 1, 2, 40 | plusffval 18563 |
. . . . . . . . 9
β’
(+πβπ
) = (π¦ β πΎ, π§ β πΎ β¦ (π¦(+gβπ
)π§)) |
42 | 16, 40 | tgpcn 23579 |
. . . . . . . . . 10
β’ (π
β TopGrp β
(+πβπ
) β ((π½ Γt π½) Cn π½)) |
43 | 14, 15, 42 | 3syl 18 |
. . . . . . . . 9
β’ (π β
(+πβπ
) β ((π½ Γt π½) Cn π½)) |
44 | 41, 43 | eqeltrrid 2838 |
. . . . . . . 8
β’ (π β (π¦ β πΎ, π§ β πΎ β¦ (π¦(+gβπ
)π§)) β ((π½ Γt π½) Cn π½)) |
45 | 44 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π¦ β πΎ, π§ β πΎ β¦ (π¦(+gβπ
)π§)) β ((π½ Γt π½) Cn π½)) |
46 | | oveq12 7414 |
. . . . . . 7
β’ ((π¦ = (πβπ₯) β§ π§ = (πβπ₯)) β (π¦(+gβπ
)π§) = ((πβπ₯)(+gβπ
)(πβπ₯))) |
47 | 35, 37, 39, 35, 35, 45, 46 | cnmpt12 23162 |
. . . . . 6
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π₯ β πΎ β¦ ((πβπ₯)(+gβπ
)(πβπ₯))) β (π½ Cn π½)) |
48 | 34, 47 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π βf
(+gβπ
)π) β (π½ Cn π½)) |
49 | 48 | 3adant2l 1178 |
. . . 4
β’ ((π β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ π β (π½ Cn π½)) β (π βf
(+gβπ
)π) β (π½ Cn π½)) |
50 | 49 | 3adant3l 1180 |
. . 3
β’ ((π β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½))) β (π βf
(+gβπ
)π) β (π½ Cn π½)) |
51 | 50 | 3expb 1120 |
. 2
β’ ((π β§ ((π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)))) β (π βf
(+gβπ
)π) β (π½ Cn π½)) |
52 | 6, 7, 8, 25, 33 | offval2 7686 |
. . . . . 6
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π βf
(.rβπ
)π) = (π₯ β πΎ β¦ ((πβπ₯)(.rβπ
)(πβπ₯)))) |
53 | | eqid 2732 |
. . . . . . . . . . 11
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
54 | 53, 1 | mgpbas 19987 |
. . . . . . . . . 10
β’ πΎ =
(Baseβ(mulGrpβπ
)) |
55 | 53, 3 | mgpplusg 19985 |
. . . . . . . . . 10
β’
(.rβπ
) = (+gβ(mulGrpβπ
)) |
56 | | eqid 2732 |
. . . . . . . . . 10
β’
(+πβ(mulGrpβπ
)) =
(+πβ(mulGrpβπ
)) |
57 | 54, 55, 56 | plusffval 18563 |
. . . . . . . . 9
β’
(+πβ(mulGrpβπ
)) = (π¦ β πΎ, π§ β πΎ β¦ (π¦(.rβπ
)π§)) |
58 | 16, 56 | mulrcn 23674 |
. . . . . . . . . 10
β’ (π
β TopRing β
(+πβ(mulGrpβπ
)) β ((π½ Γt π½) Cn π½)) |
59 | 14, 58 | syl 17 |
. . . . . . . . 9
β’ (π β
(+πβ(mulGrpβπ
)) β ((π½ Γt π½) Cn π½)) |
60 | 57, 59 | eqeltrrid 2838 |
. . . . . . . 8
β’ (π β (π¦ β πΎ, π§ β πΎ β¦ (π¦(.rβπ
)π§)) β ((π½ Γt π½) Cn π½)) |
61 | 60 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π¦ β πΎ, π§ β πΎ β¦ (π¦(.rβπ
)π§)) β ((π½ Γt π½) Cn π½)) |
62 | | oveq12 7414 |
. . . . . . 7
β’ ((π¦ = (πβπ₯) β§ π§ = (πβπ₯)) β (π¦(.rβπ
)π§) = ((πβπ₯)(.rβπ
)(πβπ₯))) |
63 | 35, 37, 39, 35, 35, 61, 62 | cnmpt12 23162 |
. . . . . 6
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π₯ β πΎ β¦ ((πβπ₯)(.rβπ
)(πβπ₯))) β (π½ Cn π½)) |
64 | 52, 63 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π β (π½ Cn π½) β§ π β (π½ Cn π½)) β (π βf
(.rβπ
)π) β (π½ Cn π½)) |
65 | 64 | 3adant2l 1178 |
. . . 4
β’ ((π β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ π β (π½ Cn π½)) β (π βf
(.rβπ
)π) β (π½ Cn π½)) |
66 | 65 | 3adant3l 1180 |
. . 3
β’ ((π β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½))) β (π βf
(.rβπ
)π) β (π½ Cn π½)) |
67 | 66 | 3expb 1120 |
. 2
β’ ((π β§ ((π β ran (eval1βπ
) β§ π β (π½ Cn π½)) β§ (π β ran (eval1βπ
) β§ π β (π½ Cn π½)))) β (π βf
(.rβπ
)π) β (π½ Cn π½)) |
68 | | eleq1 2821 |
. 2
β’ (β = (πΎ Γ {π}) β (β β (π½ Cn π½) β (πΎ Γ {π}) β (π½ Cn π½))) |
69 | | eleq1 2821 |
. 2
β’ (β = ( I βΎ πΎ) β (β β (π½ Cn π½) β ( I βΎ πΎ) β (π½ Cn π½))) |
70 | | eleq1 2821 |
. 2
β’ (β = π β (β β (π½ Cn π½) β π β (π½ Cn π½))) |
71 | | eleq1 2821 |
. 2
β’ (β = π β (β β (π½ Cn π½) β π β (π½ Cn π½))) |
72 | | eleq1 2821 |
. 2
β’ (β = (π βf
(+gβπ
)π) β (β β (π½ Cn π½) β (π βf
(+gβπ
)π) β (π½ Cn π½))) |
73 | | eleq1 2821 |
. 2
β’ (β = (π βf
(.rβπ
)π) β (β β (π½ Cn π½) β (π βf
(.rβπ
)π) β (π½ Cn π½))) |
74 | | eleq1 2821 |
. 2
β’ (β = (πΈβπΉ) β (β β (π½ Cn π½) β (πΈβπΉ) β (π½ Cn π½))) |
75 | 18 | adantr 481 |
. . 3
β’ ((π β§ π β πΎ) β π½ β (TopOnβπΎ)) |
76 | | simpr 485 |
. . 3
β’ ((π β§ π β πΎ) β π β πΎ) |
77 | | cnconst2 22778 |
. . 3
β’ ((π½ β (TopOnβπΎ) β§ π½ β (TopOnβπΎ) β§ π β πΎ) β (πΎ Γ {π}) β (π½ Cn π½)) |
78 | 75, 75, 76, 77 | syl3anc 1371 |
. 2
β’ ((π β§ π β πΎ) β (πΎ Γ {π}) β (π½ Cn π½)) |
79 | | idcn 22752 |
. . 3
β’ (π½ β (TopOnβπΎ) β ( I βΎ πΎ) β (π½ Cn π½)) |
80 | 18, 79 | syl 17 |
. 2
β’ (π β ( I βΎ πΎ) β (π½ Cn π½)) |
81 | | pl1cn.1 |
. . . . 5
β’ (π β π
β CRing) |
82 | | pl1cn.e |
. . . . . . 7
β’ πΈ = (eval1βπ
) |
83 | | pl1cn.p |
. . . . . . 7
β’ π = (Poly1βπ
) |
84 | | eqid 2732 |
. . . . . . 7
β’ (π
βs πΎ) = (π
βs πΎ) |
85 | 82, 83, 84, 1 | evl1rhm 21842 |
. . . . . 6
β’ (π
β CRing β πΈ β (π RingHom (π
βs πΎ))) |
86 | | pl1cn.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
87 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(π
βs πΎ)) = (Baseβ(π
βs πΎ)) |
88 | 86, 87 | rhmf 20255 |
. . . . . 6
β’ (πΈ β (π RingHom (π
βs πΎ)) β πΈ:π΅βΆ(Baseβ(π
βs πΎ))) |
89 | | ffn 6714 |
. . . . . 6
β’ (πΈ:π΅βΆ(Baseβ(π
βs πΎ)) β πΈ Fn π΅) |
90 | | dffn3 6727 |
. . . . . . 7
β’ (πΈ Fn π΅ β πΈ:π΅βΆran πΈ) |
91 | 90 | biimpi 215 |
. . . . . 6
β’ (πΈ Fn π΅ β πΈ:π΅βΆran πΈ) |
92 | 85, 88, 89, 91 | 4syl 19 |
. . . . 5
β’ (π
β CRing β πΈ:π΅βΆran πΈ) |
93 | 81, 92 | syl 17 |
. . . 4
β’ (π β πΈ:π΅βΆran πΈ) |
94 | | pl1cn.3 |
. . . 4
β’ (π β πΉ β π΅) |
95 | 93, 94 | ffvelcdmd 7084 |
. . 3
β’ (π β (πΈβπΉ) β ran πΈ) |
96 | 82 | rneqi 5934 |
. . 3
β’ ran πΈ = ran
(eval1βπ
) |
97 | 95, 96 | eleqtrdi 2843 |
. 2
β’ (π β (πΈβπΉ) β ran (eval1βπ
)) |
98 | 1, 2, 3, 4, 51, 67, 68, 69, 70, 71, 72, 73, 74, 78, 80, 97 | pf1ind 21865 |
1
β’ (π β (πΈβπΉ) β (π½ Cn π½)) |