Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   GIF version

Theorem pl1cn 33901
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p 𝑃 = (Poly1𝑅)
pl1cn.e 𝐸 = (eval1𝑅)
pl1cn.b 𝐵 = (Base‘𝑃)
pl1cn.k 𝐾 = (Base‘𝑅)
pl1cn.j 𝐽 = (TopOpen‘𝑅)
pl1cn.1 (𝜑𝑅 ∈ CRing)
pl1cn.2 (𝜑𝑅 ∈ TopRing)
pl1cn.3 (𝜑𝐹𝐵)
Assertion
Ref Expression
pl1cn (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))

Proof of Theorem pl1cn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2740 . 2 (+g𝑅) = (+g𝑅)
3 eqid 2740 . 2 (.r𝑅) = (.r𝑅)
4 eqid 2740 . 2 ran (eval1𝑅) = ran (eval1𝑅)
51fvexi 6934 . . . . . . . 8 𝐾 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐾 ∈ V)
7 fvexd 6935 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ V)
8 fvexd 6935 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑔𝑥) ∈ V)
9 simp1 1136 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝜑)
10 eqid 2740 . . . . . . . . . . 11 𝐽 = 𝐽
1110, 10cnf 23275 . . . . . . . . . 10 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓: 𝐽 𝐽)
1211ffnd 6748 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓 Fn 𝐽)
13123ad2ant2 1134 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 Fn 𝐽)
14 pl1cn.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ TopRing)
15 trgtgp 24197 . . . . . . . . . . . . 13 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
16 pl1cn.j . . . . . . . . . . . . . 14 𝐽 = (TopOpen‘𝑅)
1716, 1tgptopon 24111 . . . . . . . . . . . . 13 (𝑅 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐾))
1814, 15, 173syl 18 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐾))
19 toponuni 22941 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝐾) → 𝐾 = 𝐽)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝐾 = 𝐽)
2120fneq2d 6673 . . . . . . . . . 10 (𝜑 → (𝑓 Fn 𝐾𝑓 Fn 𝐽))
22 dffn5 6980 . . . . . . . . . 10 (𝑓 Fn 𝐾𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2321, 22bitr3di 286 . . . . . . . . 9 (𝜑 → (𝑓 Fn 𝐽𝑓 = (𝑥𝐾 ↦ (𝑓𝑥))))
2423biimpa 476 . . . . . . . 8 ((𝜑𝑓 Fn 𝐽) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
259, 13, 24syl2anc 583 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2610, 10cnf 23275 . . . . . . . . . 10 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔: 𝐽 𝐽)
2726ffnd 6748 . . . . . . . . 9 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔 Fn 𝐽)
28273ad2ant3 1135 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 Fn 𝐽)
2920fneq2d 6673 . . . . . . . . . 10 (𝜑 → (𝑔 Fn 𝐾𝑔 Fn 𝐽))
30 dffn5 6980 . . . . . . . . . 10 (𝑔 Fn 𝐾𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3129, 30bitr3di 286 . . . . . . . . 9 (𝜑 → (𝑔 Fn 𝐽𝑔 = (𝑥𝐾 ↦ (𝑔𝑥))))
3231biimpa 476 . . . . . . . 8 ((𝜑𝑔 Fn 𝐽) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
339, 28, 32syl2anc 583 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
346, 7, 8, 25, 33offval2 7734 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))))
35183ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐾))
36 simp2 1137 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 ∈ (𝐽 Cn 𝐽))
3725, 36eqeltrrd 2845 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑓𝑥)) ∈ (𝐽 Cn 𝐽))
38 simp3 1138 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 ∈ (𝐽 Cn 𝐽))
3933, 38eqeltrrd 2845 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑔𝑥)) ∈ (𝐽 Cn 𝐽))
40 eqid 2740 . . . . . . . . . 10 (+𝑓𝑅) = (+𝑓𝑅)
411, 2, 40plusffval 18684 . . . . . . . . 9 (+𝑓𝑅) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧))
4216, 40tgpcn 24113 . . . . . . . . . 10 (𝑅 ∈ TopGrp → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4314, 15, 423syl 18 . . . . . . . . 9 (𝜑 → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4441, 43eqeltrrid 2849 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45443ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
46 oveq12 7457 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(+g𝑅)𝑧) = ((𝑓𝑥)(+g𝑅)(𝑔𝑥)))
4735, 37, 39, 35, 35, 45, 46cnmpt12 23696 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
4834, 47eqeltrd 2844 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
49483adant2l 1178 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
50493adant3l 1180 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
51503expb 1120 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
526, 7, 8, 25, 33offval2 7734 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))))
53 eqid 2740 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5453, 1mgpbas 20167 . . . . . . . . . 10 𝐾 = (Base‘(mulGrp‘𝑅))
5553, 3mgpplusg 20165 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
56 eqid 2740 . . . . . . . . . 10 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
5754, 55, 56plusffval 18684 . . . . . . . . 9 (+𝑓‘(mulGrp‘𝑅)) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧))
5816, 56mulrcn 24208 . . . . . . . . . 10 (𝑅 ∈ TopRing → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5914, 58syl 17 . . . . . . . . 9 (𝜑 → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6057, 59eqeltrrid 2849 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61603ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
62 oveq12 7457 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(.r𝑅)𝑧) = ((𝑓𝑥)(.r𝑅)(𝑔𝑥)))
6335, 37, 39, 35, 35, 61, 62cnmpt12 23696 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
6452, 63eqeltrd 2844 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
65643adant2l 1178 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
66653adant3l 1180 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
67663expb 1120 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
68 eleq1 2832 . 2 ( = (𝐾 × {𝑓}) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽)))
69 eleq1 2832 . 2 ( = ( I ↾ 𝐾) → ( ∈ (𝐽 Cn 𝐽) ↔ ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽)))
70 eleq1 2832 . 2 ( = 𝑓 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑓 ∈ (𝐽 Cn 𝐽)))
71 eleq1 2832 . 2 ( = 𝑔 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑔 ∈ (𝐽 Cn 𝐽)))
72 eleq1 2832 . 2 ( = (𝑓f (+g𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
73 eleq1 2832 . 2 ( = (𝑓f (.r𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
74 eleq1 2832 . 2 ( = (𝐸𝐹) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐸𝐹) ∈ (𝐽 Cn 𝐽)))
7518adantr 480 . . 3 ((𝜑𝑓𝐾) → 𝐽 ∈ (TopOn‘𝐾))
76 simpr 484 . . 3 ((𝜑𝑓𝐾) → 𝑓𝐾)
77 cnconst2 23312 . . 3 ((𝐽 ∈ (TopOn‘𝐾) ∧ 𝐽 ∈ (TopOn‘𝐾) ∧ 𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
7875, 75, 76, 77syl3anc 1371 . 2 ((𝜑𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
79 idcn 23286 . . 3 (𝐽 ∈ (TopOn‘𝐾) → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
8018, 79syl 17 . 2 (𝜑 → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
81 pl1cn.1 . . . . 5 (𝜑𝑅 ∈ CRing)
82 pl1cn.e . . . . . . 7 𝐸 = (eval1𝑅)
83 pl1cn.p . . . . . . 7 𝑃 = (Poly1𝑅)
84 eqid 2740 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
8582, 83, 84, 1evl1rhm 22357 . . . . . 6 (𝑅 ∈ CRing → 𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)))
86 pl1cn.b . . . . . . 7 𝐵 = (Base‘𝑃)
87 eqid 2740 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
8886, 87rhmf 20511 . . . . . 6 (𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝐸:𝐵⟶(Base‘(𝑅s 𝐾)))
89 ffn 6747 . . . . . 6 (𝐸:𝐵⟶(Base‘(𝑅s 𝐾)) → 𝐸 Fn 𝐵)
90 dffn3 6759 . . . . . . 7 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9190biimpi 216 . . . . . 6 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9285, 88, 89, 914syl 19 . . . . 5 (𝑅 ∈ CRing → 𝐸:𝐵⟶ran 𝐸)
9381, 92syl 17 . . . 4 (𝜑𝐸:𝐵⟶ran 𝐸)
94 pl1cn.3 . . . 4 (𝜑𝐹𝐵)
9593, 94ffvelcdmd 7119 . . 3 (𝜑 → (𝐸𝐹) ∈ ran 𝐸)
9682rneqi 5962 . . 3 ran 𝐸 = ran (eval1𝑅)
9795, 96eleqtrdi 2854 . 2 (𝜑 → (𝐸𝐹) ∈ ran (eval1𝑅))
981, 2, 3, 4, 51, 67, 68, 69, 70, 71, 72, 73, 74, 78, 80, 97pf1ind 22380 1 (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931  cmpt 5249   I cid 5592   × cxp 5698  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  TopOpenctopn 17481  s cpws 17506  +𝑓cplusf 18675  mulGrpcmgp 20161  CRingccrg 20261   RingHom crh 20495  Poly1cpl1 22199  eval1ce1 22339  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  TopGrpctgp 24100  TopRingctrg 24185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-ply1 22204  df-evl1 22341  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-tmd 24101  df-tgp 24102  df-trg 24189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator