Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   GIF version

Theorem pl1cn 32045
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p 𝑃 = (Poly1𝑅)
pl1cn.e 𝐸 = (eval1𝑅)
pl1cn.b 𝐵 = (Base‘𝑃)
pl1cn.k 𝐾 = (Base‘𝑅)
pl1cn.j 𝐽 = (TopOpen‘𝑅)
pl1cn.1 (𝜑𝑅 ∈ CRing)
pl1cn.2 (𝜑𝑅 ∈ TopRing)
pl1cn.3 (𝜑𝐹𝐵)
Assertion
Ref Expression
pl1cn (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))

Proof of Theorem pl1cn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2737 . 2 (+g𝑅) = (+g𝑅)
3 eqid 2737 . 2 (.r𝑅) = (.r𝑅)
4 eqid 2737 . 2 ran (eval1𝑅) = ran (eval1𝑅)
51fvexi 6826 . . . . . . . 8 𝐾 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐾 ∈ V)
7 fvexd 6827 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ V)
8 fvexd 6827 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑔𝑥) ∈ V)
9 simp1 1135 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝜑)
10 eqid 2737 . . . . . . . . . . 11 𝐽 = 𝐽
1110, 10cnf 22480 . . . . . . . . . 10 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓: 𝐽 𝐽)
1211ffnd 6639 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓 Fn 𝐽)
13123ad2ant2 1133 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 Fn 𝐽)
14 pl1cn.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ TopRing)
15 trgtgp 23402 . . . . . . . . . . . . 13 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
16 pl1cn.j . . . . . . . . . . . . . 14 𝐽 = (TopOpen‘𝑅)
1716, 1tgptopon 23316 . . . . . . . . . . . . 13 (𝑅 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐾))
1814, 15, 173syl 18 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐾))
19 toponuni 22146 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝐾) → 𝐾 = 𝐽)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝐾 = 𝐽)
2120fneq2d 6566 . . . . . . . . . 10 (𝜑 → (𝑓 Fn 𝐾𝑓 Fn 𝐽))
22 dffn5 6868 . . . . . . . . . 10 (𝑓 Fn 𝐾𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2321, 22bitr3di 285 . . . . . . . . 9 (𝜑 → (𝑓 Fn 𝐽𝑓 = (𝑥𝐾 ↦ (𝑓𝑥))))
2423biimpa 477 . . . . . . . 8 ((𝜑𝑓 Fn 𝐽) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
259, 13, 24syl2anc 584 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2610, 10cnf 22480 . . . . . . . . . 10 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔: 𝐽 𝐽)
2726ffnd 6639 . . . . . . . . 9 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔 Fn 𝐽)
28273ad2ant3 1134 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 Fn 𝐽)
2920fneq2d 6566 . . . . . . . . . 10 (𝜑 → (𝑔 Fn 𝐾𝑔 Fn 𝐽))
30 dffn5 6868 . . . . . . . . . 10 (𝑔 Fn 𝐾𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3129, 30bitr3di 285 . . . . . . . . 9 (𝜑 → (𝑔 Fn 𝐽𝑔 = (𝑥𝐾 ↦ (𝑔𝑥))))
3231biimpa 477 . . . . . . . 8 ((𝜑𝑔 Fn 𝐽) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
339, 28, 32syl2anc 584 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
346, 7, 8, 25, 33offval2 7595 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))))
35183ad2ant1 1132 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐾))
36 simp2 1136 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 ∈ (𝐽 Cn 𝐽))
3725, 36eqeltrrd 2839 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑓𝑥)) ∈ (𝐽 Cn 𝐽))
38 simp3 1137 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 ∈ (𝐽 Cn 𝐽))
3933, 38eqeltrrd 2839 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑔𝑥)) ∈ (𝐽 Cn 𝐽))
40 eqid 2737 . . . . . . . . . 10 (+𝑓𝑅) = (+𝑓𝑅)
411, 2, 40plusffval 18409 . . . . . . . . 9 (+𝑓𝑅) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧))
4216, 40tgpcn 23318 . . . . . . . . . 10 (𝑅 ∈ TopGrp → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4314, 15, 423syl 18 . . . . . . . . 9 (𝜑 → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4441, 43eqeltrrid 2843 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45443ad2ant1 1132 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
46 oveq12 7326 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(+g𝑅)𝑧) = ((𝑓𝑥)(+g𝑅)(𝑔𝑥)))
4735, 37, 39, 35, 35, 45, 46cnmpt12 22901 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
4834, 47eqeltrd 2838 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
49483adant2l 1177 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
50493adant3l 1179 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
51503expb 1119 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
526, 7, 8, 25, 33offval2 7595 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))))
53 eqid 2737 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5453, 1mgpbas 19801 . . . . . . . . . 10 𝐾 = (Base‘(mulGrp‘𝑅))
5553, 3mgpplusg 19799 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
56 eqid 2737 . . . . . . . . . 10 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
5754, 55, 56plusffval 18409 . . . . . . . . 9 (+𝑓‘(mulGrp‘𝑅)) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧))
5816, 56mulrcn 23413 . . . . . . . . . 10 (𝑅 ∈ TopRing → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5914, 58syl 17 . . . . . . . . 9 (𝜑 → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6057, 59eqeltrrid 2843 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61603ad2ant1 1132 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
62 oveq12 7326 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(.r𝑅)𝑧) = ((𝑓𝑥)(.r𝑅)(𝑔𝑥)))
6335, 37, 39, 35, 35, 61, 62cnmpt12 22901 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
6452, 63eqeltrd 2838 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
65643adant2l 1177 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
66653adant3l 1179 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
67663expb 1119 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
68 eleq1 2825 . 2 ( = (𝐾 × {𝑓}) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽)))
69 eleq1 2825 . 2 ( = ( I ↾ 𝐾) → ( ∈ (𝐽 Cn 𝐽) ↔ ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽)))
70 eleq1 2825 . 2 ( = 𝑓 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑓 ∈ (𝐽 Cn 𝐽)))
71 eleq1 2825 . 2 ( = 𝑔 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑔 ∈ (𝐽 Cn 𝐽)))
72 eleq1 2825 . 2 ( = (𝑓f (+g𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
73 eleq1 2825 . 2 ( = (𝑓f (.r𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
74 eleq1 2825 . 2 ( = (𝐸𝐹) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐸𝐹) ∈ (𝐽 Cn 𝐽)))
7518adantr 481 . . 3 ((𝜑𝑓𝐾) → 𝐽 ∈ (TopOn‘𝐾))
76 simpr 485 . . 3 ((𝜑𝑓𝐾) → 𝑓𝐾)
77 cnconst2 22517 . . 3 ((𝐽 ∈ (TopOn‘𝐾) ∧ 𝐽 ∈ (TopOn‘𝐾) ∧ 𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
7875, 75, 76, 77syl3anc 1370 . 2 ((𝜑𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
79 idcn 22491 . . 3 (𝐽 ∈ (TopOn‘𝐾) → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
8018, 79syl 17 . 2 (𝜑 → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
81 pl1cn.1 . . . . 5 (𝜑𝑅 ∈ CRing)
82 pl1cn.e . . . . . . 7 𝐸 = (eval1𝑅)
83 pl1cn.p . . . . . . 7 𝑃 = (Poly1𝑅)
84 eqid 2737 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
8582, 83, 84, 1evl1rhm 21581 . . . . . 6 (𝑅 ∈ CRing → 𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)))
86 pl1cn.b . . . . . . 7 𝐵 = (Base‘𝑃)
87 eqid 2737 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
8886, 87rhmf 20045 . . . . . 6 (𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝐸:𝐵⟶(Base‘(𝑅s 𝐾)))
89 ffn 6638 . . . . . 6 (𝐸:𝐵⟶(Base‘(𝑅s 𝐾)) → 𝐸 Fn 𝐵)
90 dffn3 6651 . . . . . . 7 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9190biimpi 215 . . . . . 6 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9285, 88, 89, 914syl 19 . . . . 5 (𝑅 ∈ CRing → 𝐸:𝐵⟶ran 𝐸)
9381, 92syl 17 . . . 4 (𝜑𝐸:𝐵⟶ran 𝐸)
94 pl1cn.3 . . . 4 (𝜑𝐹𝐵)
9593, 94ffvelcdmd 7002 . . 3 (𝜑 → (𝐸𝐹) ∈ ran 𝐸)
9682rneqi 5866 . . 3 ran 𝐸 = ran (eval1𝑅)
9795, 96eleqtrdi 2848 . 2 (𝜑 → (𝐸𝐹) ∈ ran (eval1𝑅))
981, 2, 3, 4, 51, 67, 68, 69, 70, 71, 72, 73, 74, 78, 80, 97pf1ind 21604 1 (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4571   cuni 4850  cmpt 5170   I cid 5506   × cxp 5606  ran crn 5609  cres 5610   Fn wfn 6461  wf 6462  cfv 6466  (class class class)co 7317  cmpo 7319  f cof 7573  Basecbs 16989  +gcplusg 17039  .rcmulr 17040  TopOpenctopn 17209  s cpws 17234  +𝑓cplusf 18400  mulGrpcmgp 19795  CRingccrg 19859   RingHom crh 20031  Poly1cpl1 21431  eval1ce1 21563  TopOnctopon 22142   Cn ccn 22458   ×t ctx 22794  TopGrpctgp 23305  TopRingctrg 23390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-ofr 7576  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-fzo 13463  df-seq 13802  df-hash 14125  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-hom 17063  df-cco 17064  df-rest 17210  df-topn 17211  df-0g 17229  df-gsum 17230  df-topgen 17231  df-prds 17235  df-pws 17237  df-mre 17372  df-mrc 17373  df-acs 17375  df-plusf 18402  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-mhm 18507  df-submnd 18508  df-grp 18656  df-minusg 18657  df-sbg 18658  df-mulg 18777  df-subg 18828  df-ghm 18908  df-cntz 18999  df-cmn 19463  df-abl 19464  df-mgp 19796  df-ur 19813  df-srg 19817  df-ring 19860  df-cring 19861  df-rnghom 20034  df-subrg 20104  df-lmod 20208  df-lss 20277  df-lsp 20317  df-assa 21143  df-asp 21144  df-ascl 21145  df-psr 21195  df-mvr 21196  df-mpl 21197  df-opsr 21199  df-evls 21365  df-evl 21366  df-psr1 21434  df-ply1 21436  df-evl1 21565  df-top 22126  df-topon 22143  df-topsp 22165  df-bases 22179  df-cn 22461  df-cnp 22462  df-tx 22796  df-tmd 23306  df-tgp 23307  df-trg 23394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator