Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   GIF version

Theorem pl1cn 31308
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p 𝑃 = (Poly1𝑅)
pl1cn.e 𝐸 = (eval1𝑅)
pl1cn.b 𝐵 = (Base‘𝑃)
pl1cn.k 𝐾 = (Base‘𝑅)
pl1cn.j 𝐽 = (TopOpen‘𝑅)
pl1cn.1 (𝜑𝑅 ∈ CRing)
pl1cn.2 (𝜑𝑅 ∈ TopRing)
pl1cn.3 (𝜑𝐹𝐵)
Assertion
Ref Expression
pl1cn (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))

Proof of Theorem pl1cn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2798 . 2 (+g𝑅) = (+g𝑅)
3 eqid 2798 . 2 (.r𝑅) = (.r𝑅)
4 eqid 2798 . 2 ran (eval1𝑅) = ran (eval1𝑅)
51fvexi 6659 . . . . . . . 8 𝐾 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐾 ∈ V)
7 fvexd 6660 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ V)
8 fvexd 6660 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑔𝑥) ∈ V)
9 simp1 1133 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝜑)
10 eqid 2798 . . . . . . . . . . 11 𝐽 = 𝐽
1110, 10cnf 21851 . . . . . . . . . 10 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓: 𝐽 𝐽)
1211ffnd 6488 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓 Fn 𝐽)
13123ad2ant2 1131 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 Fn 𝐽)
14 pl1cn.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ TopRing)
15 trgtgp 22773 . . . . . . . . . . . . 13 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
16 pl1cn.j . . . . . . . . . . . . . 14 𝐽 = (TopOpen‘𝑅)
1716, 1tgptopon 22687 . . . . . . . . . . . . 13 (𝑅 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐾))
1814, 15, 173syl 18 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐾))
19 toponuni 21519 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝐾) → 𝐾 = 𝐽)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝐾 = 𝐽)
2120fneq2d 6417 . . . . . . . . . 10 (𝜑 → (𝑓 Fn 𝐾𝑓 Fn 𝐽))
22 dffn5 6699 . . . . . . . . . 10 (𝑓 Fn 𝐾𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2321, 22bitr3di 289 . . . . . . . . 9 (𝜑 → (𝑓 Fn 𝐽𝑓 = (𝑥𝐾 ↦ (𝑓𝑥))))
2423biimpa 480 . . . . . . . 8 ((𝜑𝑓 Fn 𝐽) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
259, 13, 24syl2anc 587 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2610, 10cnf 21851 . . . . . . . . . 10 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔: 𝐽 𝐽)
2726ffnd 6488 . . . . . . . . 9 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔 Fn 𝐽)
28273ad2ant3 1132 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 Fn 𝐽)
2920fneq2d 6417 . . . . . . . . . 10 (𝜑 → (𝑔 Fn 𝐾𝑔 Fn 𝐽))
30 dffn5 6699 . . . . . . . . . 10 (𝑔 Fn 𝐾𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3129, 30bitr3di 289 . . . . . . . . 9 (𝜑 → (𝑔 Fn 𝐽𝑔 = (𝑥𝐾 ↦ (𝑔𝑥))))
3231biimpa 480 . . . . . . . 8 ((𝜑𝑔 Fn 𝐽) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
339, 28, 32syl2anc 587 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
346, 7, 8, 25, 33offval2 7406 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))))
35183ad2ant1 1130 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐾))
36 simp2 1134 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 ∈ (𝐽 Cn 𝐽))
3725, 36eqeltrrd 2891 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑓𝑥)) ∈ (𝐽 Cn 𝐽))
38 simp3 1135 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 ∈ (𝐽 Cn 𝐽))
3933, 38eqeltrrd 2891 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑔𝑥)) ∈ (𝐽 Cn 𝐽))
40 eqid 2798 . . . . . . . . . 10 (+𝑓𝑅) = (+𝑓𝑅)
411, 2, 40plusffval 17850 . . . . . . . . 9 (+𝑓𝑅) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧))
4216, 40tgpcn 22689 . . . . . . . . . 10 (𝑅 ∈ TopGrp → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4314, 15, 423syl 18 . . . . . . . . 9 (𝜑 → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4441, 43eqeltrrid 2895 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45443ad2ant1 1130 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
46 oveq12 7144 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(+g𝑅)𝑧) = ((𝑓𝑥)(+g𝑅)(𝑔𝑥)))
4735, 37, 39, 35, 35, 45, 46cnmpt12 22272 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
4834, 47eqeltrd 2890 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
49483adant2l 1175 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
50493adant3l 1177 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
51503expb 1117 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
526, 7, 8, 25, 33offval2 7406 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))))
53 eqid 2798 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5453, 1mgpbas 19238 . . . . . . . . . 10 𝐾 = (Base‘(mulGrp‘𝑅))
5553, 3mgpplusg 19236 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
56 eqid 2798 . . . . . . . . . 10 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
5754, 55, 56plusffval 17850 . . . . . . . . 9 (+𝑓‘(mulGrp‘𝑅)) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧))
5816, 56mulrcn 22784 . . . . . . . . . 10 (𝑅 ∈ TopRing → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5914, 58syl 17 . . . . . . . . 9 (𝜑 → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6057, 59eqeltrrid 2895 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61603ad2ant1 1130 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
62 oveq12 7144 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(.r𝑅)𝑧) = ((𝑓𝑥)(.r𝑅)(𝑔𝑥)))
6335, 37, 39, 35, 35, 61, 62cnmpt12 22272 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
6452, 63eqeltrd 2890 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
65643adant2l 1175 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
66653adant3l 1177 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
67663expb 1117 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
68 eleq1 2877 . 2 ( = (𝐾 × {𝑓}) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽)))
69 eleq1 2877 . 2 ( = ( I ↾ 𝐾) → ( ∈ (𝐽 Cn 𝐽) ↔ ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽)))
70 eleq1 2877 . 2 ( = 𝑓 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑓 ∈ (𝐽 Cn 𝐽)))
71 eleq1 2877 . 2 ( = 𝑔 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑔 ∈ (𝐽 Cn 𝐽)))
72 eleq1 2877 . 2 ( = (𝑓f (+g𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
73 eleq1 2877 . 2 ( = (𝑓f (.r𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
74 eleq1 2877 . 2 ( = (𝐸𝐹) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐸𝐹) ∈ (𝐽 Cn 𝐽)))
7518adantr 484 . . 3 ((𝜑𝑓𝐾) → 𝐽 ∈ (TopOn‘𝐾))
76 simpr 488 . . 3 ((𝜑𝑓𝐾) → 𝑓𝐾)
77 cnconst2 21888 . . 3 ((𝐽 ∈ (TopOn‘𝐾) ∧ 𝐽 ∈ (TopOn‘𝐾) ∧ 𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
7875, 75, 76, 77syl3anc 1368 . 2 ((𝜑𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
79 idcn 21862 . . 3 (𝐽 ∈ (TopOn‘𝐾) → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
8018, 79syl 17 . 2 (𝜑 → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
81 pl1cn.1 . . . . 5 (𝜑𝑅 ∈ CRing)
82 pl1cn.e . . . . . . 7 𝐸 = (eval1𝑅)
83 pl1cn.p . . . . . . 7 𝑃 = (Poly1𝑅)
84 eqid 2798 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
8582, 83, 84, 1evl1rhm 20956 . . . . . 6 (𝑅 ∈ CRing → 𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)))
86 pl1cn.b . . . . . . 7 𝐵 = (Base‘𝑃)
87 eqid 2798 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
8886, 87rhmf 19474 . . . . . 6 (𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝐸:𝐵⟶(Base‘(𝑅s 𝐾)))
89 ffn 6487 . . . . . 6 (𝐸:𝐵⟶(Base‘(𝑅s 𝐾)) → 𝐸 Fn 𝐵)
90 dffn3 6499 . . . . . . 7 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9190biimpi 219 . . . . . 6 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9285, 88, 89, 914syl 19 . . . . 5 (𝑅 ∈ CRing → 𝐸:𝐵⟶ran 𝐸)
9381, 92syl 17 . . . 4 (𝜑𝐸:𝐵⟶ran 𝐸)
94 pl1cn.3 . . . 4 (𝜑𝐹𝐵)
9593, 94ffvelrnd 6829 . . 3 (𝜑 → (𝐸𝐹) ∈ ran 𝐸)
9682rneqi 5771 . . 3 ran 𝐸 = ran (eval1𝑅)
9795, 96eleqtrdi 2900 . 2 (𝜑 → (𝐸𝐹) ∈ ran (eval1𝑅))
981, 2, 3, 4, 51, 67, 68, 69, 70, 71, 72, 73, 74, 78, 80, 97pf1ind 20979 1 (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   cuni 4800  cmpt 5110   I cid 5424   × cxp 5517  ran crn 5520  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  TopOpenctopn 16687  s cpws 16712  +𝑓cplusf 17841  mulGrpcmgp 19232  CRingccrg 19291   RingHom crh 19460  Poly1cpl1 20806  eval1ce1 20938  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165  TopGrpctgp 22676  TopRingctrg 22761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-ply1 20811  df-evl1 20940  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-tmd 22677  df-tgp 22678  df-trg 22765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator