Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   GIF version

Theorem pl1cn 33954
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p 𝑃 = (Poly1𝑅)
pl1cn.e 𝐸 = (eval1𝑅)
pl1cn.b 𝐵 = (Base‘𝑃)
pl1cn.k 𝐾 = (Base‘𝑅)
pl1cn.j 𝐽 = (TopOpen‘𝑅)
pl1cn.1 (𝜑𝑅 ∈ CRing)
pl1cn.2 (𝜑𝑅 ∈ TopRing)
pl1cn.3 (𝜑𝐹𝐵)
Assertion
Ref Expression
pl1cn (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))

Proof of Theorem pl1cn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2737 . 2 (+g𝑅) = (+g𝑅)
3 eqid 2737 . 2 (.r𝑅) = (.r𝑅)
4 eqid 2737 . 2 ran (eval1𝑅) = ran (eval1𝑅)
51fvexi 6920 . . . . . . . 8 𝐾 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐾 ∈ V)
7 fvexd 6921 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ V)
8 fvexd 6921 . . . . . . 7 (((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) ∧ 𝑥𝐾) → (𝑔𝑥) ∈ V)
9 simp1 1137 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝜑)
10 eqid 2737 . . . . . . . . . . 11 𝐽 = 𝐽
1110, 10cnf 23254 . . . . . . . . . 10 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓: 𝐽 𝐽)
1211ffnd 6737 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐽) → 𝑓 Fn 𝐽)
13123ad2ant2 1135 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 Fn 𝐽)
14 pl1cn.2 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ TopRing)
15 trgtgp 24176 . . . . . . . . . . . . 13 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
16 pl1cn.j . . . . . . . . . . . . . 14 𝐽 = (TopOpen‘𝑅)
1716, 1tgptopon 24090 . . . . . . . . . . . . 13 (𝑅 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐾))
1814, 15, 173syl 18 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝐾))
19 toponuni 22920 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝐾) → 𝐾 = 𝐽)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝐾 = 𝐽)
2120fneq2d 6662 . . . . . . . . . 10 (𝜑 → (𝑓 Fn 𝐾𝑓 Fn 𝐽))
22 dffn5 6967 . . . . . . . . . 10 (𝑓 Fn 𝐾𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2321, 22bitr3di 286 . . . . . . . . 9 (𝜑 → (𝑓 Fn 𝐽𝑓 = (𝑥𝐾 ↦ (𝑓𝑥))))
2423biimpa 476 . . . . . . . 8 ((𝜑𝑓 Fn 𝐽) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
259, 13, 24syl2anc 584 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 = (𝑥𝐾 ↦ (𝑓𝑥)))
2610, 10cnf 23254 . . . . . . . . . 10 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔: 𝐽 𝐽)
2726ffnd 6737 . . . . . . . . 9 (𝑔 ∈ (𝐽 Cn 𝐽) → 𝑔 Fn 𝐽)
28273ad2ant3 1136 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 Fn 𝐽)
2920fneq2d 6662 . . . . . . . . . 10 (𝜑 → (𝑔 Fn 𝐾𝑔 Fn 𝐽))
30 dffn5 6967 . . . . . . . . . 10 (𝑔 Fn 𝐾𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
3129, 30bitr3di 286 . . . . . . . . 9 (𝜑 → (𝑔 Fn 𝐽𝑔 = (𝑥𝐾 ↦ (𝑔𝑥))))
3231biimpa 476 . . . . . . . 8 ((𝜑𝑔 Fn 𝐽) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
339, 28, 32syl2anc 584 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 = (𝑥𝐾 ↦ (𝑔𝑥)))
346, 7, 8, 25, 33offval2 7717 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))))
35183ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐾))
36 simp2 1138 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑓 ∈ (𝐽 Cn 𝐽))
3725, 36eqeltrrd 2842 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑓𝑥)) ∈ (𝐽 Cn 𝐽))
38 simp3 1139 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → 𝑔 ∈ (𝐽 Cn 𝐽))
3933, 38eqeltrrd 2842 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ (𝑔𝑥)) ∈ (𝐽 Cn 𝐽))
40 eqid 2737 . . . . . . . . . 10 (+𝑓𝑅) = (+𝑓𝑅)
411, 2, 40plusffval 18659 . . . . . . . . 9 (+𝑓𝑅) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧))
4216, 40tgpcn 24092 . . . . . . . . . 10 (𝑅 ∈ TopGrp → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4314, 15, 423syl 18 . . . . . . . . 9 (𝜑 → (+𝑓𝑅) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4441, 43eqeltrrid 2846 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45443ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(+g𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
46 oveq12 7440 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(+g𝑅)𝑧) = ((𝑓𝑥)(+g𝑅)(𝑔𝑥)))
4735, 37, 39, 35, 35, 45, 46cnmpt12 23675 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(+g𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
4834, 47eqeltrd 2841 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
49483adant2l 1179 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
50493adant3l 1181 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
51503expb 1121 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
526, 7, 8, 25, 33offval2 7717 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) = (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))))
53 eqid 2737 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5453, 1mgpbas 20142 . . . . . . . . . 10 𝐾 = (Base‘(mulGrp‘𝑅))
5553, 3mgpplusg 20141 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
56 eqid 2737 . . . . . . . . . 10 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
5754, 55, 56plusffval 18659 . . . . . . . . 9 (+𝑓‘(mulGrp‘𝑅)) = (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧))
5816, 56mulrcn 24187 . . . . . . . . . 10 (𝑅 ∈ TopRing → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5914, 58syl 17 . . . . . . . . 9 (𝜑 → (+𝑓‘(mulGrp‘𝑅)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6057, 59eqeltrrid 2846 . . . . . . . 8 (𝜑 → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61603ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑦𝐾, 𝑧𝐾 ↦ (𝑦(.r𝑅)𝑧)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
62 oveq12 7440 . . . . . . 7 ((𝑦 = (𝑓𝑥) ∧ 𝑧 = (𝑔𝑥)) → (𝑦(.r𝑅)𝑧) = ((𝑓𝑥)(.r𝑅)(𝑔𝑥)))
6335, 37, 39, 35, 35, 61, 62cnmpt12 23675 . . . . . 6 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑥𝐾 ↦ ((𝑓𝑥)(.r𝑅)(𝑔𝑥))) ∈ (𝐽 Cn 𝐽))
6452, 63eqeltrd 2841 . . . . 5 ((𝜑𝑓 ∈ (𝐽 Cn 𝐽) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
65643adant2l 1179 . . . 4 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
66653adant3l 1181 . . 3 ((𝜑 ∧ (𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
67663expb 1121 . 2 ((𝜑 ∧ ((𝑓 ∈ ran (eval1𝑅) ∧ 𝑓 ∈ (𝐽 Cn 𝐽)) ∧ (𝑔 ∈ ran (eval1𝑅) ∧ 𝑔 ∈ (𝐽 Cn 𝐽)))) → (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽))
68 eleq1 2829 . 2 ( = (𝐾 × {𝑓}) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽)))
69 eleq1 2829 . 2 ( = ( I ↾ 𝐾) → ( ∈ (𝐽 Cn 𝐽) ↔ ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽)))
70 eleq1 2829 . 2 ( = 𝑓 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑓 ∈ (𝐽 Cn 𝐽)))
71 eleq1 2829 . 2 ( = 𝑔 → ( ∈ (𝐽 Cn 𝐽) ↔ 𝑔 ∈ (𝐽 Cn 𝐽)))
72 eleq1 2829 . 2 ( = (𝑓f (+g𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (+g𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
73 eleq1 2829 . 2 ( = (𝑓f (.r𝑅)𝑔) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝑓f (.r𝑅)𝑔) ∈ (𝐽 Cn 𝐽)))
74 eleq1 2829 . 2 ( = (𝐸𝐹) → ( ∈ (𝐽 Cn 𝐽) ↔ (𝐸𝐹) ∈ (𝐽 Cn 𝐽)))
7518adantr 480 . . 3 ((𝜑𝑓𝐾) → 𝐽 ∈ (TopOn‘𝐾))
76 simpr 484 . . 3 ((𝜑𝑓𝐾) → 𝑓𝐾)
77 cnconst2 23291 . . 3 ((𝐽 ∈ (TopOn‘𝐾) ∧ 𝐽 ∈ (TopOn‘𝐾) ∧ 𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
7875, 75, 76, 77syl3anc 1373 . 2 ((𝜑𝑓𝐾) → (𝐾 × {𝑓}) ∈ (𝐽 Cn 𝐽))
79 idcn 23265 . . 3 (𝐽 ∈ (TopOn‘𝐾) → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
8018, 79syl 17 . 2 (𝜑 → ( I ↾ 𝐾) ∈ (𝐽 Cn 𝐽))
81 pl1cn.1 . . . . 5 (𝜑𝑅 ∈ CRing)
82 pl1cn.e . . . . . . 7 𝐸 = (eval1𝑅)
83 pl1cn.p . . . . . . 7 𝑃 = (Poly1𝑅)
84 eqid 2737 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
8582, 83, 84, 1evl1rhm 22336 . . . . . 6 (𝑅 ∈ CRing → 𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)))
86 pl1cn.b . . . . . . 7 𝐵 = (Base‘𝑃)
87 eqid 2737 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
8886, 87rhmf 20485 . . . . . 6 (𝐸 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝐸:𝐵⟶(Base‘(𝑅s 𝐾)))
89 ffn 6736 . . . . . 6 (𝐸:𝐵⟶(Base‘(𝑅s 𝐾)) → 𝐸 Fn 𝐵)
90 dffn3 6748 . . . . . . 7 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9190biimpi 216 . . . . . 6 (𝐸 Fn 𝐵𝐸:𝐵⟶ran 𝐸)
9285, 88, 89, 914syl 19 . . . . 5 (𝑅 ∈ CRing → 𝐸:𝐵⟶ran 𝐸)
9381, 92syl 17 . . . 4 (𝜑𝐸:𝐵⟶ran 𝐸)
94 pl1cn.3 . . . 4 (𝜑𝐹𝐵)
9593, 94ffvelcdmd 7105 . . 3 (𝜑 → (𝐸𝐹) ∈ ran 𝐸)
9682rneqi 5948 . . 3 ran 𝐸 = ran (eval1𝑅)
9795, 96eleqtrdi 2851 . 2 (𝜑 → (𝐸𝐹) ∈ ran (eval1𝑅))
981, 2, 3, 4, 51, 67, 68, 69, 70, 71, 72, 73, 74, 78, 80, 97pf1ind 22359 1 (𝜑 → (𝐸𝐹) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626   cuni 4907  cmpt 5225   I cid 5577   × cxp 5683  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  f cof 7695  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  TopOpenctopn 17466  s cpws 17491  +𝑓cplusf 18650  mulGrpcmgp 20137  CRingccrg 20231   RingHom crh 20469  Poly1cpl1 22178  eval1ce1 22318  TopOnctopon 22916   Cn ccn 23232   ×t ctx 23568  TopGrpctgp 24079  TopRingctrg 24164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-ply1 22183  df-evl1 22320  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-tx 23570  df-tmd 24080  df-tgp 24081  df-trg 24168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator