MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Structured version   Visualization version   GIF version

Theorem modexp 13881
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modexp
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1197 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → 𝐶 ∈ ℕ0)
2 id 22 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
323adant2l 1176 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
4 oveq2 7263 . . . . . 6 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
54oveq1d 7270 . . . . 5 (𝑥 = 0 → ((𝐴𝑥) mod 𝐷) = ((𝐴↑0) mod 𝐷))
6 oveq2 7263 . . . . . 6 (𝑥 = 0 → (𝐵𝑥) = (𝐵↑0))
76oveq1d 7270 . . . . 5 (𝑥 = 0 → ((𝐵𝑥) mod 𝐷) = ((𝐵↑0) mod 𝐷))
85, 7eqeq12d 2754 . . . 4 (𝑥 = 0 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
98imbi2d 340 . . 3 (𝑥 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
10 oveq2 7263 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑥) = (𝐴𝑘))
1110oveq1d 7270 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
12 oveq2 7263 . . . . . 6 (𝑥 = 𝑘 → (𝐵𝑥) = (𝐵𝑘))
1312oveq1d 7270 . . . . 5 (𝑥 = 𝑘 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
1411, 13eqeq12d 2754 . . . 4 (𝑥 = 𝑘 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1514imbi2d 340 . . 3 (𝑥 = 𝑘 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
16 oveq2 7263 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑥) = (𝐴↑(𝑘 + 1)))
1716oveq1d 7270 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑥) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
18 oveq2 7263 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐵𝑥) = (𝐵↑(𝑘 + 1)))
1918oveq1d 7270 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐵𝑥) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
2017, 19eqeq12d 2754 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
2120imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
22 oveq2 7263 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
2322oveq1d 7270 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
24 oveq2 7263 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
2524oveq1d 7270 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2623, 25eqeq12d 2754 . . . 4 (𝑥 = 𝐶 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2726imbi2d 340 . . 3 (𝑥 = 𝐶 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
28 zcn 12254 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
29 exp0 13714 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3028, 29syl 17 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑0) = 1)
31 zcn 12254 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
32 exp0 13714 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 17 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵↑0) = 1)
3433eqcomd 2744 . . . . . 6 (𝐵 ∈ ℤ → 1 = (𝐵↑0))
3530, 34sylan9eq 2799 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴↑0) = (𝐵↑0))
3635oveq1d 7270 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
37363ad2ant1 1131 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
38 simp21l 1288 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
39 simp1 1134 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
40 zexpcl 13725 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
4138, 39, 40syl2anc 583 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
42 simp21r 1289 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
43 zexpcl 13725 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4442, 39, 43syl2anc 583 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
45 simp22 1205 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℝ+)
46 simp3 1136 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
47 simp23 1206 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
4841, 44, 38, 42, 45, 46, 47modmul12d 13573 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
4938zcnd 12356 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
50 expp1 13717 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5149, 39, 50syl2anc 583 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq1d 7270 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5342zcnd 12356 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
54 expp1 13717 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5553, 39, 54syl2anc 583 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5655oveq1d 7270 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5748, 52, 563eqtr4d 2788 . . . . 5 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
58573exp 1117 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
5958a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
609, 15, 21, 27, 37, 59nn0ind 12345 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
611, 3, 60sylc 65 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cz 12249  +crp 12659   mod cmo 13517  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711
This theorem is referenced by:  dvdsmodexp  15899  odzdvds  16424  lgsmod  26376  lgsne0  26388  fmtnoprmfac1lem  44904  sfprmdvdsmersenne  44943  41prothprmlem2  44958
  Copyright terms: Public domain W3C validator