Step | Hyp | Ref
| Expression |
1 | | simp2l 1197 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → 𝐶 ∈
ℕ0) |
2 | | id 22 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷))) |
3 | 2 | 3adant2l 1176 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷))) |
4 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
5 | 4 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐴↑𝑥) mod 𝐷) = ((𝐴↑0) mod 𝐷)) |
6 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐵↑𝑥) = (𝐵↑0)) |
7 | 6 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐵↑𝑥) mod 𝐷) = ((𝐵↑0) mod 𝐷)) |
8 | 5, 7 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 0 → (((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))) |
9 | 8 | imbi2d 345 |
. . 3
⊢ (𝑥 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))) |
10 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐴↑𝑥) = (𝐴↑𝑘)) |
11 | 10 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐴↑𝑥) mod 𝐷) = ((𝐴↑𝑘) mod 𝐷)) |
12 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐵↑𝑥) = (𝐵↑𝑘)) |
13 | 12 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐵↑𝑥) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) |
14 | 11, 13 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑘 → (((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷) ↔ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷))) |
15 | 14 | imbi2d 345 |
. . 3
⊢ (𝑥 = 𝑘 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)))) |
16 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑘 + 1))) |
17 | 16 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐴↑𝑥) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷)) |
18 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐵↑𝑥) = (𝐵↑(𝑘 + 1))) |
19 | 18 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐵↑𝑥) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)) |
20 | 17, 19 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → (((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))) |
21 | 20 | imbi2d 345 |
. . 3
⊢ (𝑥 = (𝑘 + 1) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))) |
22 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴↑𝑥) = (𝐴↑𝐶)) |
23 | 22 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐴↑𝑥) mod 𝐷) = ((𝐴↑𝐶) mod 𝐷)) |
24 | | oveq2 7159 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐵↑𝑥) = (𝐵↑𝐶)) |
25 | 24 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐵↑𝑥) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)) |
26 | 23, 25 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷) ↔ ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷))) |
27 | 26 | imbi2d 345 |
. . 3
⊢ (𝑥 = 𝐶 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑥) mod 𝐷) = ((𝐵↑𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)))) |
28 | | zcn 12026 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
29 | | exp0 13484 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴↑0) = 1) |
31 | | zcn 12026 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
32 | | exp0 13484 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) |
33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → (𝐵↑0) = 1) |
34 | 33 | eqcomd 2765 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → 1 =
(𝐵↑0)) |
35 | 30, 34 | sylan9eq 2814 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴↑0) = (𝐵↑0)) |
36 | 35 | oveq1d 7166 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)) |
37 | 36 | 3ad2ant1 1131 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)) |
38 | | simp21l 1288 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝐴 ∈ ℤ) |
39 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0) |
40 | | zexpcl 13495 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℤ) |
41 | 38, 39, 40 | syl2anc 588 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (𝐴↑𝑘) ∈ ℤ) |
42 | | simp21r 1289 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝐵 ∈ ℤ) |
43 | | zexpcl 13495 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑𝑘) ∈
ℤ) |
44 | 42, 39, 43 | syl2anc 588 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (𝐵↑𝑘) ∈ ℤ) |
45 | | simp22 1205 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝐷 ∈
ℝ+) |
46 | | simp3 1136 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) |
47 | | simp23 1206 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) |
48 | 41, 44, 38, 42, 45, 46, 47 | modmul12d 13343 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (((𝐴↑𝑘) · 𝐴) mod 𝐷) = (((𝐵↑𝑘) · 𝐵) mod 𝐷)) |
49 | 38 | zcnd 12128 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝐴 ∈ ℂ) |
50 | | expp1 13487 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
51 | 49, 39, 50 | syl2anc 588 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
52 | 51 | oveq1d 7166 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴↑𝑘) · 𝐴) mod 𝐷)) |
53 | 42 | zcnd 12128 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → 𝐵 ∈ ℂ) |
54 | | expp1 13487 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
55 | 53, 39, 54 | syl2anc 588 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
56 | 55 | oveq1d 7166 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵↑𝑘) · 𝐵) mod 𝐷)) |
57 | 48, 52, 56 | 3eqtr4d 2804 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)) |
58 | 57 | 3exp 1117 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → (((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))) |
59 | 58 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝑘) mod 𝐷) = ((𝐵↑𝑘) mod 𝐷)) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))) |
60 | 9, 15, 21, 27, 37, 59 | nn0ind 12117 |
. 2
⊢ (𝐶 ∈ ℕ0
→ (((𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ 𝐷 ∈
ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷))) |
61 | 1, 3, 60 | sylc 65 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)) |