MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Structured version   Visualization version   GIF version

Theorem modexp 14147
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modexp
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → 𝐶 ∈ ℕ0)
2 id 22 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
323adant2l 1179 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
4 oveq2 7360 . . . . . 6 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
54oveq1d 7367 . . . . 5 (𝑥 = 0 → ((𝐴𝑥) mod 𝐷) = ((𝐴↑0) mod 𝐷))
6 oveq2 7360 . . . . . 6 (𝑥 = 0 → (𝐵𝑥) = (𝐵↑0))
76oveq1d 7367 . . . . 5 (𝑥 = 0 → ((𝐵𝑥) mod 𝐷) = ((𝐵↑0) mod 𝐷))
85, 7eqeq12d 2749 . . . 4 (𝑥 = 0 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
98imbi2d 340 . . 3 (𝑥 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
10 oveq2 7360 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑥) = (𝐴𝑘))
1110oveq1d 7367 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
12 oveq2 7360 . . . . . 6 (𝑥 = 𝑘 → (𝐵𝑥) = (𝐵𝑘))
1312oveq1d 7367 . . . . 5 (𝑥 = 𝑘 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
1411, 13eqeq12d 2749 . . . 4 (𝑥 = 𝑘 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1514imbi2d 340 . . 3 (𝑥 = 𝑘 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
16 oveq2 7360 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑥) = (𝐴↑(𝑘 + 1)))
1716oveq1d 7367 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑥) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
18 oveq2 7360 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐵𝑥) = (𝐵↑(𝑘 + 1)))
1918oveq1d 7367 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐵𝑥) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
2017, 19eqeq12d 2749 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
2120imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
22 oveq2 7360 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
2322oveq1d 7367 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
24 oveq2 7360 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
2524oveq1d 7367 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2623, 25eqeq12d 2749 . . . 4 (𝑥 = 𝐶 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2726imbi2d 340 . . 3 (𝑥 = 𝐶 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
28 zcn 12480 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
29 exp0 13974 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3028, 29syl 17 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑0) = 1)
31 zcn 12480 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
32 exp0 13974 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 17 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵↑0) = 1)
3433eqcomd 2739 . . . . . 6 (𝐵 ∈ ℤ → 1 = (𝐵↑0))
3530, 34sylan9eq 2788 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴↑0) = (𝐵↑0))
3635oveq1d 7367 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
37363ad2ant1 1133 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
38 simp21l 1291 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
39 simp1 1136 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
40 zexpcl 13985 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
4138, 39, 40syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
42 simp21r 1292 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
43 zexpcl 13985 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4442, 39, 43syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
45 simp22 1208 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℝ+)
46 simp3 1138 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
47 simp23 1209 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
4841, 44, 38, 42, 45, 46, 47modmul12d 13834 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
4938zcnd 12584 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
50 expp1 13977 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5149, 39, 50syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq1d 7367 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5342zcnd 12584 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
54 expp1 13977 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5553, 39, 54syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5655oveq1d 7367 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5748, 52, 563eqtr4d 2778 . . . . 5 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
58573exp 1119 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
5958a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
609, 15, 21, 27, 37, 59nn0ind 12574 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
611, 3, 60sylc 65 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  0cn0 12388  cz 12475  +crp 12892   mod cmo 13775  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971
This theorem is referenced by:  dvdsmodexp  16173  odzdvds  16709  lgsmod  27262  lgsne0  27274  fmtnoprmfac1lem  47688  sfprmdvdsmersenne  47727  41prothprmlem2  47742
  Copyright terms: Public domain W3C validator