MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Structured version   Visualization version   GIF version

Theorem modexp 14274
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modexp
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1198 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → 𝐶 ∈ ℕ0)
2 id 22 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
323adant2l 1177 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
4 oveq2 7439 . . . . . 6 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
54oveq1d 7446 . . . . 5 (𝑥 = 0 → ((𝐴𝑥) mod 𝐷) = ((𝐴↑0) mod 𝐷))
6 oveq2 7439 . . . . . 6 (𝑥 = 0 → (𝐵𝑥) = (𝐵↑0))
76oveq1d 7446 . . . . 5 (𝑥 = 0 → ((𝐵𝑥) mod 𝐷) = ((𝐵↑0) mod 𝐷))
85, 7eqeq12d 2751 . . . 4 (𝑥 = 0 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
98imbi2d 340 . . 3 (𝑥 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
10 oveq2 7439 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑥) = (𝐴𝑘))
1110oveq1d 7446 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
12 oveq2 7439 . . . . . 6 (𝑥 = 𝑘 → (𝐵𝑥) = (𝐵𝑘))
1312oveq1d 7446 . . . . 5 (𝑥 = 𝑘 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
1411, 13eqeq12d 2751 . . . 4 (𝑥 = 𝑘 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1514imbi2d 340 . . 3 (𝑥 = 𝑘 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
16 oveq2 7439 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑥) = (𝐴↑(𝑘 + 1)))
1716oveq1d 7446 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑥) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
18 oveq2 7439 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐵𝑥) = (𝐵↑(𝑘 + 1)))
1918oveq1d 7446 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐵𝑥) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
2017, 19eqeq12d 2751 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
2120imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
22 oveq2 7439 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
2322oveq1d 7446 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
24 oveq2 7439 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
2524oveq1d 7446 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2623, 25eqeq12d 2751 . . . 4 (𝑥 = 𝐶 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2726imbi2d 340 . . 3 (𝑥 = 𝐶 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
28 zcn 12616 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
29 exp0 14103 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3028, 29syl 17 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑0) = 1)
31 zcn 12616 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
32 exp0 14103 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 17 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵↑0) = 1)
3433eqcomd 2741 . . . . . 6 (𝐵 ∈ ℤ → 1 = (𝐵↑0))
3530, 34sylan9eq 2795 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴↑0) = (𝐵↑0))
3635oveq1d 7446 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
37363ad2ant1 1132 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
38 simp21l 1289 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
39 simp1 1135 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
40 zexpcl 14114 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
4138, 39, 40syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
42 simp21r 1290 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
43 zexpcl 14114 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4442, 39, 43syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
45 simp22 1206 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℝ+)
46 simp3 1137 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
47 simp23 1207 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
4841, 44, 38, 42, 45, 46, 47modmul12d 13963 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
4938zcnd 12721 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
50 expp1 14106 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5149, 39, 50syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq1d 7446 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5342zcnd 12721 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
54 expp1 14106 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5553, 39, 54syl2anc 584 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5655oveq1d 7446 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5748, 52, 563eqtr4d 2785 . . . . 5 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
58573exp 1118 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
5958a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
609, 15, 21, 27, 37, 59nn0ind 12711 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
611, 3, 60sylc 65 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  0cn0 12524  cz 12611  +crp 13032   mod cmo 13906  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100
This theorem is referenced by:  dvdsmodexp  16295  odzdvds  16829  lgsmod  27382  lgsne0  27394  fmtnoprmfac1lem  47489  sfprmdvdsmersenne  47528  41prothprmlem2  47543
  Copyright terms: Public domain W3C validator