MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Visualization version   GIF version

Theorem lmmbr2 25200
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 βŠ† (β„‚ Γ— 𝑋) allows to use objects more general than sequences when convenient; see the comment in df-lm 23146. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpenβ€˜π·)
lmmbr.3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Assertion
Ref Expression
lmmbr2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
Distinct variable groups:   𝑗,π‘˜,π‘₯,𝐷   𝑗,𝐹,π‘˜,π‘₯   𝑃,𝑗,π‘˜,π‘₯   𝑗,𝑋,π‘˜,π‘₯   π‘₯,𝐽   πœ‘,𝑗,π‘˜,π‘₯
Allowed substitution hints:   𝐽(𝑗,π‘˜)

Proof of Theorem lmmbr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3 𝐽 = (MetOpenβ€˜π·)
2 lmmbr.3 . . 3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
31, 2lmmbr 25199 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯))))
4 df-3an 1087 . . . 4 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)))
5 uzf 12856 . . . . . . . . . 10 β„€β‰₯:β„€βŸΆπ’« β„€
6 ffn 6722 . . . . . . . . . 10 (β„€β‰₯:β„€βŸΆπ’« β„€ β†’ β„€β‰₯ Fn β„€)
7 reseq2 5980 . . . . . . . . . . . 12 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ (𝐹 β†Ύ 𝑦) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)))
8 id 22 . . . . . . . . . . . 12 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ 𝑦 = (β„€β‰₯β€˜π‘—))
97, 8feq12d 6710 . . . . . . . . . . 11 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ ((𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯)))
109rexrn 7097 . . . . . . . . . 10 (β„€β‰₯ Fn β„€ β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯)))
115, 6, 10mp2b 10 . . . . . . . . 9 (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯))
12 simp2l 1197 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
13 elfvdm 6934 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
14133ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ 𝑋 ∈ dom ∞Met)
15 cnex 11220 . . . . . . . . . . . . . . 15 β„‚ ∈ V
16 elpmg 8862 . . . . . . . . . . . . . . 15 ((𝑋 ∈ dom ∞Met ∧ β„‚ ∈ V) β†’ (𝐹 ∈ (𝑋 ↑pm β„‚) ↔ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋))))
1714, 15, 16sylancl 585 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (𝐹 ∈ (𝑋 ↑pm β„‚) ↔ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋))))
1812, 17mpbid 231 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋)))
1918simpld 494 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ Fun 𝐹)
20 ffvresb 7135 . . . . . . . . . . . 12 (Fun 𝐹 β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯))))
2119, 20syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯))))
22 rpxr 13016 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ ℝ+ β†’ π‘₯ ∈ ℝ*)
23 elbl 24307 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ*) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯)))
2422, 23syl3an3 1163 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯)))
25 xmetsym 24266 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ (𝑃𝐷(πΉβ€˜π‘˜)) = ((πΉβ€˜π‘˜)𝐷𝑃))
2625breq1d 5158 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ ((𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯ ↔ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))
27263expa 1116 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ ((𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯ ↔ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))
2827pm5.32da 578 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
29283adant3 1130 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ (((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3024, 29bitrd 279 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
31303adant2l 1176 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3231anbi2d 629 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ (π‘˜ ∈ dom 𝐹 ∧ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
33 3anass 1093 . . . . . . . . . . . . 13 ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯) ↔ (π‘˜ ∈ dom 𝐹 ∧ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3432, 33bitr4di 289 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ (π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3534ralbidv 3174 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3621, 35bitrd 279 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3736rexbidv 3175 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3811, 37bitrid 283 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
39383expa 1116 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4039ralbidva 3172 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4140pm5.32da 578 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
422, 41syl 17 . . . 4 (πœ‘ β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
434, 42bitrid 283 . . 3 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
44 df-3an 1087 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4543, 44bitr4di 289 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
463, 45bitrd 279 1 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3058  βˆƒwrex 3067  Vcvv 3471   βŠ† wss 3947  π’« cpw 4603   class class class wbr 5148   Γ— cxp 5676  dom cdm 5678  ran crn 5679   β†Ύ cres 5680  Fun wfun 6542   Fn wfn 6543  βŸΆwf 6544  β€˜cfv 6548  (class class class)co 7420   ↑pm cpm 8846  β„‚cc 11137  β„*cxr 11278   < clt 11279  β„€cz 12589  β„€β‰₯cuz 12853  β„+crp 13007  βˆžMetcxmet 21264  ballcbl 21266  MetOpencmopn 21269  β‡π‘‘clm 23143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-topgen 17425  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-top 22809  df-topon 22826  df-bases 22862  df-lm 23146
This theorem is referenced by:  lmmbr3  25201
  Copyright terms: Public domain W3C validator