MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Visualization version   GIF version

Theorem lmmbr2 23777
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21753. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
Assertion
Ref Expression
lmmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐽(𝑗,𝑘)

Proof of Theorem lmmbr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmmbr.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
31, 2lmmbr 23776 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
4 df-3an 1083 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
5 uzf 12235 . . . . . . . . . 10 :ℤ⟶𝒫 ℤ
6 ffn 6511 . . . . . . . . . 10 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 reseq2 5847 . . . . . . . . . . . 12 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 ↾ (ℤ𝑗)))
8 id 22 . . . . . . . . . . . 12 (𝑦 = (ℤ𝑗) → 𝑦 = (ℤ𝑗))
97, 8feq12d 6499 . . . . . . . . . . 11 (𝑦 = (ℤ𝑗) → ((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥)))
109rexrn 6849 . . . . . . . . . 10 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥)))
115, 6, 10mp2b 10 . . . . . . . . 9 (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥))
12 simp2l 1193 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑋pm ℂ))
13 elfvdm 6699 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
14133ad2ant1 1127 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → 𝑋 ∈ dom ∞Met)
15 cnex 10607 . . . . . . . . . . . . . . 15 ℂ ∈ V
16 elpmg 8412 . . . . . . . . . . . . . . 15 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
1714, 15, 16sylancl 586 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
1812, 17mpbid 233 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
1918simpld 495 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → Fun 𝐹)
20 ffvresb 6884 . . . . . . . . . . . 12 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥))))
2119, 20syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥))))
22 rpxr 12388 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
23 elbl 22913 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥)))
2422, 23syl3an3 1159 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥)))
25 xmetsym 22872 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → (𝑃𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷𝑃))
2625breq1d 5073 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑥))
27263expa 1112 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2827pm5.32da 579 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
29283adant3 1126 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3024, 29bitrd 280 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
31303adant2l 1172 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anbi2d 628 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
33 3anass 1089 . . . . . . . . . . . . 13 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3432, 33syl6bbr 290 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534ralbidv 3202 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3621, 35bitrd 280 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736rexbidv 3302 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3811, 37syl5bb 284 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
39383expa 1112 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4039ralbidva 3201 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4140pm5.32da 579 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
422, 41syl 17 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
434, 42syl5bb 284 . . 3 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
44 df-3an 1083 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4543, 44syl6bbr 290 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
463, 45bitrd 280 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144  Vcvv 3500  wss 3940  𝒫 cpw 4542   class class class wbr 5063   × cxp 5552  dom cdm 5554  ran crn 5555  cres 5556  Fun wfun 6346   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  pm cpm 8397  cc 10524  *cxr 10663   < clt 10664  cz 11970  cuz 12232  +crp 12379  ∞Metcxmet 20446  ballcbl 20448  MetOpencmopn 20451  𝑡clm 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-topgen 16707  df-psmet 20453  df-xmet 20454  df-bl 20456  df-mopn 20457  df-top 21418  df-topon 21435  df-bases 21470  df-lm 21753
This theorem is referenced by:  lmmbr3  23778
  Copyright terms: Public domain W3C validator