| Step | Hyp | Ref
| Expression |
| 1 | | lmmbr.2 |
. . 3
⊢ 𝐽 = (MetOpen‘𝐷) |
| 2 | | lmmbr.3 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 3 | 1, 2 | lmmbr 25215 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
| 4 | | df-3an 1088 |
. . . 4
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 5 | | uzf 12860 |
. . . . . . . . . 10
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 6 | | ffn 6711 |
. . . . . . . . . 10
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
| 7 | | reseq2 5966 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(ℤ≥‘𝑗) → (𝐹 ↾ 𝑦) = (𝐹 ↾ (ℤ≥‘𝑗))) |
| 8 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(ℤ≥‘𝑗) → 𝑦 = (ℤ≥‘𝑗)) |
| 9 | 7, 8 | feq12d 6699 |
. . . . . . . . . . 11
⊢ (𝑦 =
(ℤ≥‘𝑗) → ((𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥))) |
| 10 | 9 | rexrn 7082 |
. . . . . . . . . 10
⊢
(ℤ≥ Fn ℤ → (∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥))) |
| 11 | 5, 6, 10 | mp2b 10 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥)) |
| 12 | | simp2l 1200 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| 13 | | elfvdm 6918 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → 𝑋 ∈ dom
∞Met) |
| 15 | | cnex 11215 |
. . . . . . . . . . . . . . 15
⊢ ℂ
∈ V |
| 16 | | elpmg 8862 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ dom ∞Met ∧
ℂ ∈ V) → (𝐹
∈ (𝑋
↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 17 | 14, 15, 16 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 18 | 12, 17 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋))) |
| 19 | 18 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → Fun 𝐹) |
| 20 | | ffvresb 7120 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)))) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)))) |
| 22 | | rpxr 13023 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
| 23 | | elbl 24332 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥))) |
| 24 | 22, 23 | syl3an3 1165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥))) |
| 25 | | xmetsym 24291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑃𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷𝑃)) |
| 26 | 25 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
| 27 | 26 | 3expa 1118 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
| 28 | 27 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 29 | 28 | 3adant3 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → (((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 30 | 24, 29 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 31 | 30 | 3adant2l 1179 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 32 | 31 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 33 | | 3anass 1094 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 34 | 32, 33 | bitr4di 289 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 35 | 34 | ralbidv 3164 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 36 | 21, 35 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 37 | 36 | rexbidv 3165 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℤ
(𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 38 | 11, 37 | bitrid 283 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 39 | 38 | 3expa 1118 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 40 | 39 | ralbidva 3162 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 41 | 40 | pm5.32da 579 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 42 | 2, 41 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 43 | 4, 42 | bitrid 283 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 44 | | df-3an 1088 |
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
| 45 | 43, 44 | bitr4di 289 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
| 46 | 3, 45 | bitrd 279 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |