Step | Hyp | Ref
| Expression |
1 | | lmmbr.2 |
. . 3
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | | lmmbr.3 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
3 | 1, 2 | lmmbr 24422 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
4 | | df-3an 1088 |
. . . 4
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
5 | | uzf 12585 |
. . . . . . . . . 10
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
6 | | ffn 6600 |
. . . . . . . . . 10
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
7 | | reseq2 5886 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(ℤ≥‘𝑗) → (𝐹 ↾ 𝑦) = (𝐹 ↾ (ℤ≥‘𝑗))) |
8 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(ℤ≥‘𝑗) → 𝑦 = (ℤ≥‘𝑗)) |
9 | 7, 8 | feq12d 6588 |
. . . . . . . . . . 11
⊢ (𝑦 =
(ℤ≥‘𝑗) → ((𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥))) |
10 | 9 | rexrn 6963 |
. . . . . . . . . 10
⊢
(ℤ≥ Fn ℤ → (∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥))) |
11 | 5, 6, 10 | mp2b 10 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥)) |
12 | | simp2l 1198 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
13 | | elfvdm 6806 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
14 | 13 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → 𝑋 ∈ dom
∞Met) |
15 | | cnex 10952 |
. . . . . . . . . . . . . . 15
⊢ ℂ
∈ V |
16 | | elpmg 8631 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ dom ∞Met ∧
ℂ ∈ V) → (𝐹
∈ (𝑋
↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
17 | 14, 15, 16 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
18 | 12, 17 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋))) |
19 | 18 | simpld 495 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → Fun 𝐹) |
20 | | ffvresb 6998 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)))) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)))) |
22 | | rpxr 12739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
23 | | elbl 23541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥))) |
24 | 22, 23 | syl3an3 1164 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥))) |
25 | | xmetsym 23500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑃𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷𝑃)) |
26 | 25 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
27 | 26 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
28 | 27 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
29 | 28 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → (((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
30 | 24, 29 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
31 | 30 | 3adant2l 1177 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
32 | 31 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
33 | | 3anass 1094 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
34 | 32, 33 | bitr4di 289 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
35 | 34 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
36 | 21, 35 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
37 | 36 | rexbidv 3226 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℤ
(𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
38 | 11, 37 | bitrid 282 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
39 | 38 | 3expa 1117 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
40 | 39 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
41 | 40 | pm5.32da 579 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
42 | 2, 41 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
43 | 4, 42 | bitrid 282 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
44 | | df-3an 1088 |
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
45 | 43, 44 | bitr4di 289 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
46 | 3, 45 | bitrd 278 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |