MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Visualization version   GIF version

Theorem lmmbr2 23385
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21362. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
Assertion
Ref Expression
lmmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐽(𝑗,𝑘)

Proof of Theorem lmmbr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmmbr.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
31, 2lmmbr 23384 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
4 df-3an 1110 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
5 uzf 11933 . . . . . . . . . 10 :ℤ⟶𝒫 ℤ
6 ffn 6256 . . . . . . . . . 10 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 reseq2 5595 . . . . . . . . . . . 12 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 ↾ (ℤ𝑗)))
8 id 22 . . . . . . . . . . . 12 (𝑦 = (ℤ𝑗) → 𝑦 = (ℤ𝑗))
97, 8feq12d 6244 . . . . . . . . . . 11 (𝑦 = (ℤ𝑗) → ((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥)))
109rexrn 6587 . . . . . . . . . 10 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥)))
115, 6, 10mp2b 10 . . . . . . . . 9 (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥))
12 simp2l 1257 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑋pm ℂ))
13 elfvdm 6443 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
14133ad2ant1 1164 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → 𝑋 ∈ dom ∞Met)
15 cnex 10305 . . . . . . . . . . . . . . 15 ℂ ∈ V
16 elpmg 8111 . . . . . . . . . . . . . . 15 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
1714, 15, 16sylancl 581 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
1812, 17mpbid 224 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
1918simpld 489 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → Fun 𝐹)
20 ffvresb 6620 . . . . . . . . . . . 12 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥))))
2119, 20syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥))))
22 rpxr 12085 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
23 elbl 22521 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥)))
2422, 23syl3an3 1206 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥)))
25 xmetsym 22480 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → (𝑃𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷𝑃))
2625breq1d 4853 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑥))
27263expa 1148 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝑃𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2827pm5.32da 575 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
29283adant3 1163 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ (𝑃𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3024, 29bitrd 271 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
31303adant2l 1226 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anbi2d 623 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
33 3anass 1117 . . . . . . . . . . . . 13 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3432, 33syl6bbr 281 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534ralbidv 3167 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑃(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3621, 35bitrd 271 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736rexbidv 3233 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3811, 37syl5bb 275 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
39383expa 1148 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4039ralbidva 3166 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4140pm5.32da 575 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
422, 41syl 17 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
434, 42syl5bb 275 . . 3 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
44 df-3an 1110 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
4543, 44syl6bbr 281 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
463, 45bitrd 271 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  wss 3769  𝒫 cpw 4349   class class class wbr 4843   × cxp 5310  dom cdm 5312  ran crn 5313  cres 5314  Fun wfun 6095   Fn wfn 6096  wf 6097  cfv 6101  (class class class)co 6878  pm cpm 8096  cc 10222  *cxr 10362   < clt 10363  cz 11666  cuz 11930  +crp 12074  ∞Metcxmet 20053  ballcbl 20055  MetOpencmopn 20058  𝑡clm 21359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-topgen 16419  df-psmet 20060  df-xmet 20061  df-bl 20063  df-mopn 20064  df-top 21027  df-topon 21044  df-bases 21079  df-lm 21362
This theorem is referenced by:  lmmbr3  23386
  Copyright terms: Public domain W3C validator