MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Visualization version   GIF version

Theorem lmmbr2 24775
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 βŠ† (β„‚ Γ— 𝑋) allows to use objects more general than sequences when convenient; see the comment in df-lm 22732. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpenβ€˜π·)
lmmbr.3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Assertion
Ref Expression
lmmbr2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
Distinct variable groups:   𝑗,π‘˜,π‘₯,𝐷   𝑗,𝐹,π‘˜,π‘₯   𝑃,𝑗,π‘˜,π‘₯   𝑗,𝑋,π‘˜,π‘₯   π‘₯,𝐽   πœ‘,𝑗,π‘˜,π‘₯
Allowed substitution hints:   𝐽(𝑗,π‘˜)

Proof of Theorem lmmbr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3 𝐽 = (MetOpenβ€˜π·)
2 lmmbr.3 . . 3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
31, 2lmmbr 24774 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯))))
4 df-3an 1089 . . . 4 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)))
5 uzf 12824 . . . . . . . . . 10 β„€β‰₯:β„€βŸΆπ’« β„€
6 ffn 6717 . . . . . . . . . 10 (β„€β‰₯:β„€βŸΆπ’« β„€ β†’ β„€β‰₯ Fn β„€)
7 reseq2 5976 . . . . . . . . . . . 12 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ (𝐹 β†Ύ 𝑦) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)))
8 id 22 . . . . . . . . . . . 12 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ 𝑦 = (β„€β‰₯β€˜π‘—))
97, 8feq12d 6705 . . . . . . . . . . 11 (𝑦 = (β„€β‰₯β€˜π‘—) β†’ ((𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯)))
109rexrn 7088 . . . . . . . . . 10 (β„€β‰₯ Fn β„€ β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯)))
115, 6, 10mp2b 10 . . . . . . . . 9 (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯))
12 simp2l 1199 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
13 elfvdm 6928 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
14133ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ 𝑋 ∈ dom ∞Met)
15 cnex 11190 . . . . . . . . . . . . . . 15 β„‚ ∈ V
16 elpmg 8836 . . . . . . . . . . . . . . 15 ((𝑋 ∈ dom ∞Met ∧ β„‚ ∈ V) β†’ (𝐹 ∈ (𝑋 ↑pm β„‚) ↔ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋))))
1714, 15, 16sylancl 586 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (𝐹 ∈ (𝑋 ↑pm β„‚) ↔ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋))))
1812, 17mpbid 231 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (Fun 𝐹 ∧ 𝐹 βŠ† (β„‚ Γ— 𝑋)))
1918simpld 495 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ Fun 𝐹)
20 ffvresb 7123 . . . . . . . . . . . 12 (Fun 𝐹 β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯))))
2119, 20syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯))))
22 rpxr 12982 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ ℝ+ β†’ π‘₯ ∈ ℝ*)
23 elbl 23893 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ*) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯)))
2422, 23syl3an3 1165 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯)))
25 xmetsym 23852 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ (𝑃𝐷(πΉβ€˜π‘˜)) = ((πΉβ€˜π‘˜)𝐷𝑃))
2625breq1d 5158 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ ((𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯ ↔ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))
27263expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (πΉβ€˜π‘˜) ∈ 𝑋) β†’ ((𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯ ↔ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))
2827pm5.32da 579 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
29283adant3 1132 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ (((πΉβ€˜π‘˜) ∈ 𝑋 ∧ (𝑃𝐷(πΉβ€˜π‘˜)) < π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3024, 29bitrd 278 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
31303adant2l 1178 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯) ↔ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3231anbi2d 629 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ (π‘˜ ∈ dom 𝐹 ∧ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
33 3anass 1095 . . . . . . . . . . . . 13 ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯) ↔ (π‘˜ ∈ dom 𝐹 ∧ ((πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3432, 33bitr4di 288 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ (π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3534ralbidv 3177 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ (𝑃(ballβ€˜π·)π‘₯)) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3621, 35bitrd 278 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3736rexbidv 3178 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
3811, 37bitrid 282 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
39383expa 1118 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) ∧ π‘₯ ∈ ℝ+) β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4039ralbidva 3175 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4140pm5.32da 579 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
422, 41syl 17 . . . 4 (πœ‘ β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
434, 42bitrid 282 . . 3 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
44 df-3an 1089 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯)))
4543, 44bitr4di 288 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆ(𝑃(ballβ€˜π·)π‘₯)) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
463, 45bitrd 278 1 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷𝑃) < π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602   class class class wbr 5148   Γ— cxp 5674  dom cdm 5676  ran crn 5677   β†Ύ cres 5678  Fun wfun 6537   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑pm cpm 8820  β„‚cc 11107  β„*cxr 11246   < clt 11247  β„€cz 12557  β„€β‰₯cuz 12821  β„+crp 12973  βˆžMetcxmet 20928  ballcbl 20930  MetOpencmopn 20933  β‡π‘‘clm 22729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-lm 22732
This theorem is referenced by:  lmmbr3  24776
  Copyright terms: Public domain W3C validator