MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 481 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1162 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  ltdiv23  12109  lediv23  12110  divalglem8  16347  isdrngd  20533  isdrngdOLD  20535  deg1tm  25871  ax5seglem1  28453  ax5seglem2  28454  nvaddsub4  30177  nmoub2i  30294  cdleme21at  39502  cdleme42f  39654  trlcoabs2N  39896  tendoplcl2  39952  tendopltp  39954  cdlemk2  40006  cdlemk8  40012  cdlemk9  40013  cdlemk9bN  40014  cdleml8  40157  dihglblem3N  40469  dihglblem3aN  40470  fourierdlem42  45163  lincscm  47198  itsclc0yqsol  47537
  Copyright terms: Public domain W3C validator