| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ltdiv23 12074 lediv23 12075 divalglem8 16370 isdrngd 20674 isdrngdOLD 20676 deg1tm 26024 ax5seglem1 28855 ax5seglem2 28856 nvaddsub4 30586 nmoub2i 30703 cdleme21at 40322 cdleme42f 40474 trlcoabs2N 40716 tendoplcl2 40772 tendopltp 40774 cdlemk2 40826 cdlemk8 40832 cdlemk9 40833 cdlemk9bN 40834 cdleml8 40977 dihglblem3N 41289 dihglblem3aN 41290 fourierdlem42 46147 lincscm 48416 itsclc0yqsol 48750 |
| Copyright terms: Public domain | W3C validator |