MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ltdiv23  12186  lediv23  12187  divalglem8  16448  isdrngd  20787  isdrngdOLD  20789  deg1tm  26178  ax5seglem1  28961  ax5seglem2  28962  nvaddsub4  30689  nmoub2i  30806  cdleme21at  40285  cdleme42f  40437  trlcoabs2N  40679  tendoplcl2  40735  tendopltp  40737  cdlemk2  40789  cdlemk8  40795  cdlemk9  40796  cdlemk9bN  40797  cdleml8  40940  dihglblem3N  41252  dihglblem3aN  41253  fourierdlem42  46070  lincscm  48159  itsclc0yqsol  48498
  Copyright terms: Public domain W3C validator