MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ltdiv23  12034  lediv23  12035  divalglem8  16329  isdrngd  20668  isdrngdOLD  20670  deg1tm  26040  ax5seglem1  28891  ax5seglem2  28892  nvaddsub4  30619  nmoub2i  30736  cdleme21at  40307  cdleme42f  40459  trlcoabs2N  40701  tendoplcl2  40757  tendopltp  40759  cdlemk2  40811  cdlemk8  40817  cdlemk9  40818  cdlemk9bN  40819  cdleml8  40962  dihglblem3N  41274  dihglblem3aN  41275  fourierdlem42  46131  lincscm  48416  itsclc0yqsol  48750
  Copyright terms: Public domain W3C validator