![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1162 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: ltdiv23 12109 lediv23 12110 divalglem8 16347 isdrngd 20533 isdrngdOLD 20535 deg1tm 25871 ax5seglem1 28453 ax5seglem2 28454 nvaddsub4 30177 nmoub2i 30294 cdleme21at 39502 cdleme42f 39654 trlcoabs2N 39896 tendoplcl2 39952 tendopltp 39954 cdlemk2 40006 cdlemk8 40012 cdlemk9 40013 cdlemk9bN 40014 cdleml8 40157 dihglblem3N 40469 dihglblem3aN 40470 fourierdlem42 45163 lincscm 47198 itsclc0yqsol 47537 |
Copyright terms: Public domain | W3C validator |