| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ltdiv23 12126 lediv23 12127 divalglem8 16406 isdrngd 20712 isdrngdOLD 20714 deg1tm 26063 ax5seglem1 28841 ax5seglem2 28842 nvaddsub4 30572 nmoub2i 30689 cdleme21at 40276 cdleme42f 40428 trlcoabs2N 40670 tendoplcl2 40726 tendopltp 40728 cdlemk2 40780 cdlemk8 40786 cdlemk9 40787 cdlemk9bN 40788 cdleml8 40931 dihglblem3N 41243 dihglblem3aN 41244 fourierdlem42 46114 lincscm 48300 itsclc0yqsol 48638 |
| Copyright terms: Public domain | W3C validator |