MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 483 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  ltdiv23  12101  lediv23  12102  divalglem8  16339  isdrngd  20340  isdrngdOLD  20342  deg1tm  25627  ax5seglem1  28175  ax5seglem2  28176  nvaddsub4  29897  nmoub2i  30014  cdleme21at  39187  cdleme42f  39339  trlcoabs2N  39581  tendoplcl2  39637  tendopltp  39639  cdlemk2  39691  cdlemk8  39697  cdlemk9  39698  cdlemk9bN  39699  cdleml8  39842  dihglblem3N  40154  dihglblem3aN  40155  fourierdlem42  44851  lincscm  47064  itsclc0yqsol  47403
  Copyright terms: Public domain W3C validator