MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ltdiv23  12020  lediv23  12021  divalglem8  16313  isdrngd  20682  isdrngdOLD  20684  deg1tm  26052  ax5seglem1  28908  ax5seglem2  28909  nvaddsub4  30639  nmoub2i  30756  cdleme21at  40448  cdleme42f  40600  trlcoabs2N  40842  tendoplcl2  40898  tendopltp  40900  cdlemk2  40952  cdlemk8  40958  cdlemk9  40959  cdlemk9bN  40960  cdleml8  41103  dihglblem3N  41415  dihglblem3aN  41416  fourierdlem42  46272  lincscm  48556  itsclc0yqsol  48890
  Copyright terms: Public domain W3C validator