| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ltdiv23 12013 lediv23 12014 divalglem8 16311 isdrngd 20681 isdrngdOLD 20683 deg1tm 26052 ax5seglem1 28907 ax5seglem2 28908 nvaddsub4 30635 nmoub2i 30752 cdleme21at 40373 cdleme42f 40525 trlcoabs2N 40767 tendoplcl2 40823 tendopltp 40825 cdlemk2 40877 cdlemk8 40883 cdlemk9 40884 cdlemk9bN 40885 cdleml8 41028 dihglblem3N 41340 dihglblem3aN 41341 fourierdlem42 46193 lincscm 48468 itsclc0yqsol 48802 |
| Copyright terms: Public domain | W3C validator |