Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1163 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ltdiv23 11866 lediv23 11867 divalglem8 16109 isdrngd 20016 deg1tm 25283 ax5seglem1 27296 ax5seglem2 27297 nvaddsub4 29019 nmoub2i 29136 cdleme21at 38342 cdleme42f 38494 trlcoabs2N 38736 tendoplcl2 38792 tendopltp 38794 cdlemk2 38846 cdlemk8 38852 cdlemk9 38853 cdlemk9bN 38854 cdleml8 38997 dihglblem3N 39309 dihglblem3aN 39310 fourierdlem42 43690 lincscm 45771 itsclc0yqsol 46110 |
Copyright terms: Public domain | W3C validator |