| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ltdiv23 12020 lediv23 12021 divalglem8 16313 isdrngd 20682 isdrngdOLD 20684 deg1tm 26052 ax5seglem1 28908 ax5seglem2 28909 nvaddsub4 30639 nmoub2i 30756 cdleme21at 40448 cdleme42f 40600 trlcoabs2N 40842 tendoplcl2 40898 tendopltp 40900 cdlemk2 40952 cdlemk8 40958 cdlemk9 40959 cdlemk9bN 40960 cdleml8 41103 dihglblem3N 41415 dihglblem3aN 41416 fourierdlem42 46272 lincscm 48556 itsclc0yqsol 48890 |
| Copyright terms: Public domain | W3C validator |