MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ltdiv23  12013  lediv23  12014  divalglem8  16311  isdrngd  20681  isdrngdOLD  20683  deg1tm  26052  ax5seglem1  28907  ax5seglem2  28908  nvaddsub4  30635  nmoub2i  30752  cdleme21at  40373  cdleme42f  40525  trlcoabs2N  40767  tendoplcl2  40823  tendopltp  40825  cdlemk2  40877  cdlemk8  40883  cdlemk9  40884  cdlemk9bN  40885  cdleml8  41028  dihglblem3N  41340  dihglblem3aN  41341  fourierdlem42  46193  lincscm  48468  itsclc0yqsol  48802
  Copyright terms: Public domain W3C validator