MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1178
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 483 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1163 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ltdiv23  11866  lediv23  11867  divalglem8  16109  isdrngd  20016  deg1tm  25283  ax5seglem1  27296  ax5seglem2  27297  nvaddsub4  29019  nmoub2i  29136  cdleme21at  38342  cdleme42f  38494  trlcoabs2N  38736  tendoplcl2  38792  tendopltp  38794  cdlemk2  38846  cdlemk8  38852  cdlemk9  38853  cdlemk9bN  38854  cdleml8  38997  dihglblem3N  39309  dihglblem3aN  39310  fourierdlem42  43690  lincscm  45771  itsclc0yqsol  46110
  Copyright terms: Public domain W3C validator