MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ltdiv23  12126  lediv23  12127  divalglem8  16406  isdrngd  20712  isdrngdOLD  20714  deg1tm  26063  ax5seglem1  28841  ax5seglem2  28842  nvaddsub4  30572  nmoub2i  30689  cdleme21at  40276  cdleme42f  40428  trlcoabs2N  40670  tendoplcl2  40726  tendopltp  40728  cdlemk2  40780  cdlemk8  40786  cdlemk9  40787  cdlemk9bN  40788  cdleml8  40931  dihglblem3N  41243  dihglblem3aN  41244  fourierdlem42  46114  lincscm  48300  itsclc0yqsol  48638
  Copyright terms: Public domain W3C validator