![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: ltdiv23 12101 lediv23 12102 divalglem8 16339 isdrngd 20340 isdrngdOLD 20342 deg1tm 25627 ax5seglem1 28175 ax5seglem2 28176 nvaddsub4 29897 nmoub2i 30014 cdleme21at 39187 cdleme42f 39339 trlcoabs2N 39581 tendoplcl2 39637 tendopltp 39639 cdlemk2 39691 cdlemk8 39697 cdlemk9 39698 cdlemk9bN 39699 cdleml8 39842 dihglblem3N 40154 dihglblem3aN 40155 fourierdlem42 44851 lincscm 47064 itsclc0yqsol 47403 |
Copyright terms: Public domain | W3C validator |