![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1163 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: ltdiv23 12157 lediv23 12158 divalglem8 16434 isdrngd 20782 isdrngdOLD 20784 deg1tm 26173 ax5seglem1 28958 ax5seglem2 28959 nvaddsub4 30686 nmoub2i 30803 cdleme21at 40311 cdleme42f 40463 trlcoabs2N 40705 tendoplcl2 40761 tendopltp 40763 cdlemk2 40815 cdlemk8 40821 cdlemk9 40822 cdlemk9bN 40823 cdleml8 40966 dihglblem3N 41278 dihglblem3aN 41279 fourierdlem42 46105 lincscm 48276 itsclc0yqsol 48614 |
Copyright terms: Public domain | W3C validator |