MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 484 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1165 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  ltdiv23  12105  lediv23  12106  divalglem8  16343  isdrngd  20390  isdrngdOLD  20392  deg1tm  25636  ax5seglem1  28186  ax5seglem2  28187  nvaddsub4  29910  nmoub2i  30027  cdleme21at  39199  cdleme42f  39351  trlcoabs2N  39593  tendoplcl2  39649  tendopltp  39651  cdlemk2  39703  cdlemk8  39709  cdlemk9  39710  cdlemk9bN  39711  cdleml8  39854  dihglblem3N  40166  dihglblem3aN  40167  fourierdlem42  44865  lincscm  47111  itsclc0yqsol  47450
  Copyright terms: Public domain W3C validator