![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1164 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ltdiv23 12186 lediv23 12187 divalglem8 16448 isdrngd 20787 isdrngdOLD 20789 deg1tm 26178 ax5seglem1 28961 ax5seglem2 28962 nvaddsub4 30689 nmoub2i 30806 cdleme21at 40285 cdleme42f 40437 trlcoabs2N 40679 tendoplcl2 40735 tendopltp 40737 cdlemk2 40789 cdlemk8 40795 cdlemk9 40796 cdlemk9bN 40797 cdleml8 40940 dihglblem3N 41252 dihglblem3aN 41253 fourierdlem42 46070 lincscm 48159 itsclc0yqsol 48498 |
Copyright terms: Public domain | W3C validator |