![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant2r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an2 1165 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: ltdiv23 12105 lediv23 12106 divalglem8 16343 isdrngd 20390 isdrngdOLD 20392 deg1tm 25636 ax5seglem1 28186 ax5seglem2 28187 nvaddsub4 29910 nmoub2i 30027 cdleme21at 39199 cdleme42f 39351 trlcoabs2N 39593 tendoplcl2 39649 tendopltp 39651 cdlemk2 39703 cdlemk8 39709 cdlemk9 39710 cdlemk9bN 39711 cdleml8 39854 dihglblem3N 40166 dihglblem3aN 40167 fourierdlem42 44865 lincscm 47111 itsclc0yqsol 47450 |
Copyright terms: Public domain | W3C validator |