MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1164 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ltdiv23  12138  lediv23  12139  divalglem8  16424  isdrngd  20730  isdrngdOLD  20732  deg1tm  26081  ax5seglem1  28912  ax5seglem2  28913  nvaddsub4  30643  nmoub2i  30760  cdleme21at  40352  cdleme42f  40504  trlcoabs2N  40746  tendoplcl2  40802  tendopltp  40804  cdlemk2  40856  cdlemk8  40862  cdlemk9  40863  cdlemk9bN  40864  cdleml8  41007  dihglblem3N  41319  dihglblem3aN  41320  fourierdlem42  46145  lincscm  48373  itsclc0yqsol  48711
  Copyright terms: Public domain W3C validator