MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3 Structured version   Visualization version   GIF version

Theorem minvecolem3 28580
Description: Lemma for minveco 28588. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem3 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem3
Dummy variables 𝑗 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 11709 . . . . . . 7 4 ∈ ℝ
2 4pos 11732 . . . . . . 7 0 < 4
31, 2elrpii 12380 . . . . . 6 4 ∈ ℝ+
4 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 2z 12002 . . . . . . 7 2 ∈ ℤ
6 rpexpcl 13436 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
74, 5, 6sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
8 rpdivcl 12402 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
93, 7, 8sylancr 587 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
10 rprege0 12392 . . . . 5 ((4 / (𝑥↑2)) ∈ ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))))
11 flge0nn0 13178 . . . . 5 (((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈ ℕ0)
12 nn0p1nn 11924 . . . . 5 ((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
139, 10, 11, 124syl 19 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
14 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
15 phnv 28518 . . . . . . . . . . 11 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
16 minveco.x . . . . . . . . . . . 12 𝑋 = (BaseSet‘𝑈)
17 minveco.d . . . . . . . . . . . 12 𝐷 = (IndMet‘𝑈)
1816, 17imsmet 28395 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
1914, 15, 183syl 18 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
2019ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋))
2114, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
22 inss1 4202 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
23 minveco.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
2422, 23sseldi 3962 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
25 minveco.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
26 eqid 2818 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
2716, 25, 26sspba 28431 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
2821, 24, 27syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
2928ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌𝑋)
30 minveco.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶𝑌)
3130ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌)
3213adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
3331, 32ffvelrnd 6844 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌)
3429, 33sseldd 3965 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋)
35 eluznn 12306 . . . . . . . . . . . 12 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3613, 35sylan 580 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3731, 36ffvelrnd 6844 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
3829, 37sseldd 3965 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
39 metcl 22869 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4020, 34, 38, 39syl3anc 1363 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4140resqcld 13599 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ∈ ℝ)
4232nnrpd 12417 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
4342rpreccld 12429 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
44 rpmulcl 12400 . . . . . . . . 9 ((4 ∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
453, 43, 44sylancr 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
4645rpred 12419 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
477adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ+)
4847rpred 12419 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ)
49 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
50 minveco.n . . . . . . . 8 𝑁 = (normCV𝑈)
5114ad2antrr 722 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈ CPreHilOLD)
5223ad2antrr 722 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
53 minveco.a . . . . . . . . 9 (𝜑𝐴𝑋)
5453ad2antrr 722 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴𝑋)
55 minveco.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
56 minveco.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
57 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
5813nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
5958rpreccld 12429 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6059adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6160rpred 12419 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ)
6260rpge0d 12423 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
6330adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌)
6463ffvelrnda 6843 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
6536, 64syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
66 fveq2 6663 . . . . . . . . . . . 12 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
6766oveq2d 7161 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))))
6867oveq1d 7160 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2))
69 oveq2 7153 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 / 𝑛) = (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
7069oveq2d 7161 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7168, 70breq12d 5070 . . . . . . . . 9 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))))
72 minveco.1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7372ralrimiva 3179 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7473ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7571, 74, 32rspcdva 3622 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7629, 65sseldd 3965 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
77 metcl 22869 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7820, 54, 76, 77syl3anc 1363 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7978resqcld 13599 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
8016, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 28578 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
81 0re 10631 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
82 breq1 5060 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8382ralbidv 3194 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8483rspcev 3620 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8581, 84mpan 686 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
86853anim3i 1146 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤))
87 infrecl 11611 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
8880, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
8957, 88eqeltrid 2914 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
9089resqcld 13599 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℝ)
9190ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ)
9236nnrecred 11676 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈ ℝ)
9391, 92readdcld 10658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
9491, 61readdcld 10658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
9572adantlr 711 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
9636, 95syldan 591 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
97 eluzle 12244 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9897adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9942rpregt0d 12425 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)))
100 nnre 11633 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
101 nngt0 11656 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 𝑛)
102100, 101jca 512 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
10336, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
104 lerec 11511 . . . . . . . . . . . 12 (((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10599, 103, 104syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10698, 105mpbid 233 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
10792, 61, 91, 106leadd2dd 11243 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10879, 93, 94, 96, 107letrd 10785 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10916, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108minvecolem2 28579 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ≤ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
110 rpdivcl 12402 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈ ℝ+)
11147, 3, 110sylancl 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈ ℝ+)
112 rpcnne0 12395 . . . . . . . . . . . 12 ((𝑥↑2) ∈ ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
11347, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
114 rpcnne0 12395 . . . . . . . . . . . 12 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
1153, 114ax-mp 5 . . . . . . . . . . 11 (4 ∈ ℂ ∧ 4 ≠ 0)
116 recdiv 11334 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
117113, 115, 116sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
1189adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ+)
119118rpred 12419 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ)
120 flltp1 13158 . . . . . . . . . . 11 ((4 / (𝑥↑2)) ∈ ℝ → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
121119, 120syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
122117, 121eqbrtrd 5079 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) < ((⌊‘(4 / (𝑥↑2))) + 1))
123111, 42, 122ltrec1d 12439 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))
1241, 2pm3.2i 471 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
125 ltmuldiv2 11502 . . . . . . . . . 10 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
126124, 125mp3an3 1441 . . . . . . . . 9 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
12761, 48, 126syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
128123, 127mpbird 258 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2))
12941, 46, 48, 109, 128lelttrd 10786 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2))
130 metge0 22882 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
13120, 34, 38, 130syl3anc 1363 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
132 rprege0 12392 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
133132ad2antlr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
134 lt2sq 13486 . . . . . . 7 (((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
13540, 131, 133, 134syl21anc 833 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
136129, 135mpbird 258 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
137136ralrimiva 3179 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
138 fveq2 6663 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)))
139 fveq2 6663 . . . . . . . 8 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
140139oveq1d 7160 . . . . . . 7 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹𝑗)𝐷(𝐹𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
141140breq1d 5067 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
142138, 141raleqbidv 3399 . . . . 5 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
143142rspcev 3620 . . . 4 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
14413, 137, 143syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
145144ralrimiva 3179 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
146 nnuz 12269 . . 3 ℕ = (ℤ‘1)
14716, 17imsxmet 28396 . . . 4 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
14814, 15, 1473syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
149 1zzd 12001 . . 3 (𝜑 → 1 ∈ ℤ)
150 eqidd 2819 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
151 eqidd 2819 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
15230, 28fssd 6521 . . 3 (𝜑𝐹:ℕ⟶𝑋)
153146, 148, 149, 150, 151, 152iscauf 23810 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
154145, 153mpbird 258 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  cin 3932  wss 3933  c0 4288   class class class wbr 5057  cmpt 5137  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  infcinf 8893  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664   / cdiv 11285  cn 11626  2c2 11680  4c4 11682  0cn0 11885  cz 11969  cuz 12231  +crp 12377  cfl 13148  cexp 13417  ∞Metcxmet 20458  Metcmet 20459  MetOpencmopn 20463  Cauccau 23783  NrmCVeccnv 28288  BaseSetcba 28290  𝑣 cnsb 28293  normCVcnmcv 28294  IndMetcims 28295  SubSpcss 28425  CPreHilOLDccphlo 28516  CBanccbn 28566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-cau 23786  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304  df-ims 28305  df-ssp 28426  df-ph 28517  df-cbn 28567
This theorem is referenced by:  minvecolem4a  28581
  Copyright terms: Public domain W3C validator