MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3 Structured version   Visualization version   GIF version

Theorem minvecolem3 29226
Description: Lemma for minveco 29234. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem3 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem3
Dummy variables 𝑗 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12049 . . . . . . 7 4 ∈ ℝ
2 4pos 12072 . . . . . . 7 0 < 4
31, 2elrpii 12724 . . . . . 6 4 ∈ ℝ+
4 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 2z 12344 . . . . . . 7 2 ∈ ℤ
6 rpexpcl 13791 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
74, 5, 6sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
8 rpdivcl 12746 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
93, 7, 8sylancr 587 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
10 rprege0 12736 . . . . 5 ((4 / (𝑥↑2)) ∈ ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))))
11 flge0nn0 13530 . . . . 5 (((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈ ℕ0)
12 nn0p1nn 12264 . . . . 5 ((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
139, 10, 11, 124syl 19 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
14 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
15 phnv 29164 . . . . . . . . . . 11 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
16 minveco.x . . . . . . . . . . . 12 𝑋 = (BaseSet‘𝑈)
17 minveco.d . . . . . . . . . . . 12 𝐷 = (IndMet‘𝑈)
1816, 17imsmet 29041 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
1914, 15, 183syl 18 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
2019ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋))
2114, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
22 inss1 4168 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
23 minveco.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
2422, 23sselid 3924 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
25 minveco.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
26 eqid 2740 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
2716, 25, 26sspba 29077 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
2821, 24, 27syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
2928ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌𝑋)
30 minveco.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶𝑌)
3130ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌)
3213adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
3331, 32ffvelrnd 6957 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌)
3429, 33sseldd 3927 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋)
35 eluznn 12649 . . . . . . . . . . . 12 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3613, 35sylan 580 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3731, 36ffvelrnd 6957 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
3829, 37sseldd 3927 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
39 metcl 23475 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4020, 34, 38, 39syl3anc 1370 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4140resqcld 13955 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ∈ ℝ)
4232nnrpd 12761 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
4342rpreccld 12773 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
44 rpmulcl 12744 . . . . . . . . 9 ((4 ∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
453, 43, 44sylancr 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
4645rpred 12763 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
477adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ+)
4847rpred 12763 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ)
49 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
50 minveco.n . . . . . . . 8 𝑁 = (normCV𝑈)
5114ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈ CPreHilOLD)
5223ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
53 minveco.a . . . . . . . . 9 (𝜑𝐴𝑋)
5453ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴𝑋)
55 minveco.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
56 minveco.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
57 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
5813nnrpd 12761 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
5958rpreccld 12773 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6059adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6160rpred 12763 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ)
6260rpge0d 12767 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
6330adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌)
6463ffvelrnda 6956 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
6536, 64syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
66 fveq2 6769 . . . . . . . . . . . 12 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
6766oveq2d 7285 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))))
6867oveq1d 7284 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2))
69 oveq2 7277 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 / 𝑛) = (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
7069oveq2d 7285 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7168, 70breq12d 5092 . . . . . . . . 9 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))))
72 minveco.1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7372ralrimiva 3110 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7473ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7571, 74, 32rspcdva 3563 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7629, 65sseldd 3927 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
77 metcl 23475 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7820, 54, 76, 77syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7978resqcld 13955 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
8016, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 29224 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
81 0re 10970 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
82 breq1 5082 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8382ralbidv 3123 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8483rspcev 3561 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8581, 84mpan 687 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
86853anim3i 1153 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤))
87 infrecl 11949 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
8880, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
8957, 88eqeltrid 2845 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
9089resqcld 13955 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℝ)
9190ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ)
9236nnrecred 12016 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈ ℝ)
9391, 92readdcld 10997 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
9491, 61readdcld 10997 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
9572adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
9636, 95syldan 591 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
97 eluzle 12586 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9897adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9942rpregt0d 12769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)))
100 nnre 11972 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
101 nngt0 11996 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 𝑛)
102100, 101jca 512 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
10336, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
104 lerec 11850 . . . . . . . . . . . 12 (((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10599, 103, 104syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10698, 105mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
10792, 61, 91, 106leadd2dd 11582 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10879, 93, 94, 96, 107letrd 11124 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10916, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108minvecolem2 29225 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ≤ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
110 rpdivcl 12746 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈ ℝ+)
11147, 3, 110sylancl 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈ ℝ+)
112 rpcnne0 12739 . . . . . . . . . . . 12 ((𝑥↑2) ∈ ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
11347, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
114 rpcnne0 12739 . . . . . . . . . . . 12 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
1153, 114ax-mp 5 . . . . . . . . . . 11 (4 ∈ ℂ ∧ 4 ≠ 0)
116 recdiv 11673 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
117113, 115, 116sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
1189adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ+)
119118rpred 12763 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ)
120 flltp1 13510 . . . . . . . . . . 11 ((4 / (𝑥↑2)) ∈ ℝ → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
121119, 120syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
122117, 121eqbrtrd 5101 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) < ((⌊‘(4 / (𝑥↑2))) + 1))
123111, 42, 122ltrec1d 12783 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))
1241, 2pm3.2i 471 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
125 ltmuldiv2 11841 . . . . . . . . . 10 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
126124, 125mp3an3 1449 . . . . . . . . 9 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
12761, 48, 126syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
128123, 127mpbird 256 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2))
12941, 46, 48, 109, 128lelttrd 11125 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2))
130 metge0 23488 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
13120, 34, 38, 130syl3anc 1370 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
132 rprege0 12736 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
133132ad2antlr 724 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
134 lt2sq 13842 . . . . . . 7 (((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
13540, 131, 133, 134syl21anc 835 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
136129, 135mpbird 256 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
137136ralrimiva 3110 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
138 fveq2 6769 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)))
139 fveq2 6769 . . . . . . . 8 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
140139oveq1d 7284 . . . . . . 7 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹𝑗)𝐷(𝐹𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
141140breq1d 5089 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
142138, 141raleqbidv 3335 . . . . 5 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
143142rspcev 3561 . . . 4 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
14413, 137, 143syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
145144ralrimiva 3110 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
146 nnuz 12612 . . 3 ℕ = (ℤ‘1)
14716, 17imsxmet 29042 . . . 4 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
14814, 15, 1473syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
149 1zzd 12343 . . 3 (𝜑 → 1 ∈ ℤ)
150 eqidd 2741 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
151 eqidd 2741 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
15230, 28fssd 6615 . . 3 (𝜑𝐹:ℕ⟶𝑋)
153146, 148, 149, 150, 151, 152iscauf 24434 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
154145, 153mpbird 256 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  cin 3891  wss 3892  c0 4262   class class class wbr 5079  cmpt 5162  ran crn 5590  wf 6427  cfv 6431  (class class class)co 7269  infcinf 9170  cc 10862  cr 10863  0cc0 10864  1c1 10865   + caddc 10867   · cmul 10869   < clt 11002  cle 11003   / cdiv 11624  cn 11965  2c2 12020  4c4 12022  0cn0 12225  cz 12311  cuz 12573  +crp 12721  cfl 13500  cexp 13772  ∞Metcxmet 20572  Metcmet 20573  MetOpencmopn 20577  Cauccau 24407  NrmCVeccnv 28934  BaseSetcba 28936  𝑣 cnsb 28939  normCVcnmcv 28940  IndMetcims 28941  SubSpcss 29071  CPreHilOLDccphlo 29162  CBanccbn 29212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-map 8592  df-pm 8593  df-en 8709  df-dom 8710  df-sdom 8711  df-sup 9171  df-inf 9172  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-n0 12226  df-z 12312  df-uz 12574  df-rp 12722  df-xneg 12839  df-xadd 12840  df-xmul 12841  df-fl 13502  df-seq 13712  df-exp 13773  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-psmet 20579  df-xmet 20580  df-met 20581  df-bl 20582  df-cau 24410  df-grpo 28843  df-gid 28844  df-ginv 28845  df-gdiv 28846  df-ablo 28895  df-vc 28909  df-nv 28942  df-va 28945  df-ba 28946  df-sm 28947  df-0v 28948  df-vs 28949  df-nmcv 28950  df-ims 28951  df-ssp 29072  df-ph 29163  df-cbn 29213
This theorem is referenced by:  minvecolem4a  29227
  Copyright terms: Public domain W3C validator