MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3 Structured version   Visualization version   GIF version

Theorem minvecolem3 29818
Description: Lemma for minveco 29826. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem3 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem3
Dummy variables 𝑗 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12237 . . . . . . 7 4 ∈ ℝ
2 4pos 12260 . . . . . . 7 0 < 4
31, 2elrpii 12918 . . . . . 6 4 ∈ ℝ+
4 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 2z 12535 . . . . . . 7 2 ∈ ℤ
6 rpexpcl 13986 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
74, 5, 6sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
8 rpdivcl 12940 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
93, 7, 8sylancr 587 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
10 rprege0 12930 . . . . 5 ((4 / (𝑥↑2)) ∈ ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))))
11 flge0nn0 13725 . . . . 5 (((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈ ℕ0)
12 nn0p1nn 12452 . . . . 5 ((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
139, 10, 11, 124syl 19 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
14 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
15 phnv 29756 . . . . . . . . . . 11 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
16 minveco.x . . . . . . . . . . . 12 𝑋 = (BaseSet‘𝑈)
17 minveco.d . . . . . . . . . . . 12 𝐷 = (IndMet‘𝑈)
1816, 17imsmet 29633 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
1914, 15, 183syl 18 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
2019ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋))
2114, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
22 inss1 4188 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
23 minveco.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
2422, 23sselid 3942 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
25 minveco.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
26 eqid 2736 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
2716, 25, 26sspba 29669 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
2821, 24, 27syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
2928ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌𝑋)
30 minveco.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶𝑌)
3130ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌)
3213adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
3331, 32ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌)
3429, 33sseldd 3945 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋)
35 eluznn 12843 . . . . . . . . . . . 12 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3613, 35sylan 580 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3731, 36ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
3829, 37sseldd 3945 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
39 metcl 23685 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4020, 34, 38, 39syl3anc 1371 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4140resqcld 14030 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ∈ ℝ)
4232nnrpd 12955 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
4342rpreccld 12967 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
44 rpmulcl 12938 . . . . . . . . 9 ((4 ∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
453, 43, 44sylancr 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
4645rpred 12957 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
477adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ+)
4847rpred 12957 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ)
49 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
50 minveco.n . . . . . . . 8 𝑁 = (normCV𝑈)
5114ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈ CPreHilOLD)
5223ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
53 minveco.a . . . . . . . . 9 (𝜑𝐴𝑋)
5453ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴𝑋)
55 minveco.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
56 minveco.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
57 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
5813nnrpd 12955 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
5958rpreccld 12967 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6059adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6160rpred 12957 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ)
6260rpge0d 12961 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
6330adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌)
6463ffvelcdmda 7035 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
6536, 64syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
66 fveq2 6842 . . . . . . . . . . . 12 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
6766oveq2d 7373 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))))
6867oveq1d 7372 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2))
69 oveq2 7365 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 / 𝑛) = (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
7069oveq2d 7373 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7168, 70breq12d 5118 . . . . . . . . 9 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))))
72 minveco.1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7372ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7473ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7571, 74, 32rspcdva 3582 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7629, 65sseldd 3945 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
77 metcl 23685 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7820, 54, 76, 77syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7978resqcld 14030 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
8016, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 29816 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
81 0re 11157 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
82 breq1 5108 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8382ralbidv 3174 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8483rspcev 3581 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8581, 84mpan 688 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
86853anim3i 1154 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤))
87 infrecl 12137 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
8880, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
8957, 88eqeltrid 2842 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
9089resqcld 14030 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℝ)
9190ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ)
9236nnrecred 12204 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈ ℝ)
9391, 92readdcld 11184 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
9491, 61readdcld 11184 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
9572adantlr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
9636, 95syldan 591 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
97 eluzle 12776 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9897adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9942rpregt0d 12963 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)))
100 nnre 12160 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
101 nngt0 12184 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 𝑛)
102100, 101jca 512 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
10336, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
104 lerec 12038 . . . . . . . . . . . 12 (((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10599, 103, 104syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10698, 105mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
10792, 61, 91, 106leadd2dd 11770 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10879, 93, 94, 96, 107letrd 11312 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10916, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108minvecolem2 29817 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ≤ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
110 rpdivcl 12940 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈ ℝ+)
11147, 3, 110sylancl 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈ ℝ+)
112 rpcnne0 12933 . . . . . . . . . . . 12 ((𝑥↑2) ∈ ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
11347, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
114 rpcnne0 12933 . . . . . . . . . . . 12 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
1153, 114ax-mp 5 . . . . . . . . . . 11 (4 ∈ ℂ ∧ 4 ≠ 0)
116 recdiv 11861 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
117113, 115, 116sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
1189adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ+)
119118rpred 12957 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ)
120 flltp1 13705 . . . . . . . . . . 11 ((4 / (𝑥↑2)) ∈ ℝ → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
121119, 120syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
122117, 121eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) < ((⌊‘(4 / (𝑥↑2))) + 1))
123111, 42, 122ltrec1d 12977 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))
1241, 2pm3.2i 471 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
125 ltmuldiv2 12029 . . . . . . . . . 10 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
126124, 125mp3an3 1450 . . . . . . . . 9 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
12761, 48, 126syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
128123, 127mpbird 256 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2))
12941, 46, 48, 109, 128lelttrd 11313 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2))
130 metge0 23698 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
13120, 34, 38, 130syl3anc 1371 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
132 rprege0 12930 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
133132ad2antlr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
134 lt2sq 14038 . . . . . . 7 (((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
13540, 131, 133, 134syl21anc 836 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
136129, 135mpbird 256 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
137136ralrimiva 3143 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
138 fveq2 6842 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)))
139 fveq2 6842 . . . . . . . 8 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
140139oveq1d 7372 . . . . . . 7 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹𝑗)𝐷(𝐹𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
141140breq1d 5115 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
142138, 141raleqbidv 3319 . . . . 5 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
143142rspcev 3581 . . . 4 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
14413, 137, 143syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
145144ralrimiva 3143 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
146 nnuz 12806 . . 3 ℕ = (ℤ‘1)
14716, 17imsxmet 29634 . . . 4 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
14814, 15, 1473syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
149 1zzd 12534 . . 3 (𝜑 → 1 ∈ ℤ)
150 eqidd 2737 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
151 eqidd 2737 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
15230, 28fssd 6686 . . 3 (𝜑𝐹:ℕ⟶𝑋)
153146, 148, 149, 150, 151, 152iscauf 24644 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
154145, 153mpbird 256 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499  cuz 12763  +crp 12915  cfl 13695  cexp 13967  ∞Metcxmet 20781  Metcmet 20782  MetOpencmopn 20786  Cauccau 24617  NrmCVeccnv 29526  BaseSetcba 29528  𝑣 cnsb 29531  normCVcnmcv 29532  IndMetcims 29533  SubSpcss 29663  CPreHilOLDccphlo 29754  CBanccbn 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-cau 24620  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-ssp 29664  df-ph 29755  df-cbn 29805
This theorem is referenced by:  minvecolem4a  29819
  Copyright terms: Public domain W3C validator