| Step | Hyp | Ref
| Expression |
| 1 | | 4re 12350 |
. . . . . . 7
⊢ 4 ∈
ℝ |
| 2 | | 4pos 12373 |
. . . . . . 7
⊢ 0 <
4 |
| 3 | 1, 2 | elrpii 13037 |
. . . . . 6
⊢ 4 ∈
ℝ+ |
| 4 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 5 | | 2z 12649 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 6 | | rpexpcl 14121 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
| 7 | 4, 5, 6 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
| 8 | | rpdivcl 13060 |
. . . . . 6
⊢ ((4
∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) →
(4 / (𝑥↑2)) ∈
ℝ+) |
| 9 | 3, 7, 8 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (4 /
(𝑥↑2)) ∈
ℝ+) |
| 10 | | rprege0 13050 |
. . . . 5
⊢ ((4 /
(𝑥↑2)) ∈
ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 /
(𝑥↑2)))) |
| 11 | | flge0nn0 13860 |
. . . . 5
⊢ (((4 /
(𝑥↑2)) ∈ ℝ
∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈
ℕ0) |
| 12 | | nn0p1nn 12565 |
. . . . 5
⊢
((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℕ) |
| 13 | 9, 10, 11, 12 | 4syl 19 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℕ) |
| 14 | | minveco.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈
CPreHilOLD) |
| 15 | | phnv 30833 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 ∈
NrmCVec) |
| 16 | | minveco.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (BaseSet‘𝑈) |
| 17 | | minveco.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (IndMet‘𝑈) |
| 18 | 16, 17 | imsmet 30710 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| 19 | 14, 15, 18 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋)) |
| 21 | 14, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
| 22 | | inss1 4237 |
. . . . . . . . . . . . 13
⊢
((SubSp‘𝑈)
∩ CBan) ⊆ (SubSp‘𝑈) |
| 23 | | minveco.w |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| 24 | 22, 23 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
| 25 | | minveco.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = (BaseSet‘𝑊) |
| 26 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(SubSp‘𝑈) =
(SubSp‘𝑈) |
| 27 | 16, 25, 26 | sspba 30746 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
| 28 | 21, 24, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌 ⊆ 𝑋) |
| 30 | | minveco.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌) |
| 32 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ∈
ℕ) |
| 33 | 31, 32 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌) |
| 34 | 29, 33 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋) |
| 35 | | eluznn 12960 |
. . . . . . . . . . . 12
⊢
((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ) |
| 36 | 13, 35 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ) |
| 37 | 31, 36 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑌) |
| 38 | 29, 37 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑋) |
| 39 | | metcl 24342 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 40 | 20, 34, 38, 39 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 41 | 40 | resqcld 14165 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
| 42 | 32 | nnrpd 13075 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ∈
ℝ+) |
| 43 | 42 | rpreccld 13087 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
| 44 | | rpmulcl 13058 |
. . . . . . . . 9
⊢ ((4
∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
→ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ+) |
| 45 | 3, 43, 44 | sylancr 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ+) |
| 46 | 45 | rpred 13077 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ) |
| 47 | 7 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈
ℝ+) |
| 48 | 47 | rpred 13077 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ) |
| 49 | | minveco.m |
. . . . . . . 8
⊢ 𝑀 = ( −𝑣
‘𝑈) |
| 50 | | minveco.n |
. . . . . . . 8
⊢ 𝑁 =
(normCV‘𝑈) |
| 51 | 14 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈
CPreHilOLD) |
| 52 | 23 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| 53 | | minveco.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 54 | 53 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴 ∈ 𝑋) |
| 55 | | minveco.j |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
| 56 | | minveco.r |
. . . . . . . 8
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 57 | | minveco.s |
. . . . . . . 8
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| 58 | 13 | nnrpd 13075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℝ+) |
| 59 | 58 | rpreccld 13087 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
| 60 | 59 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
| 61 | 60 | rpred 13077 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ) |
| 62 | 60 | rpge0d 13081 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) |
| 63 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌) |
| 64 | 63 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑌) |
| 65 | 36, 64 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑌) |
| 66 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹‘𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) +
1))) |
| 67 | 66 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹‘𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) +
1)))) |
| 68 | 67 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹‘𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) +
1)))↑2)) |
| 69 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 /
𝑛) = (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) |
| 70 | 69 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
| 71 | 68, 70 | breq12d 5156 |
. . . . . . . . 9
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤
((𝑆↑2) + (1 /
((⌊‘(4 / (𝑥↑2))) + 1))))) |
| 72 | | minveco.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 73 | 72 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 74 | 73 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 75 | 71, 74, 32 | rspcdva 3623 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤
((𝑆↑2) + (1 /
((⌊‘(4 / (𝑥↑2))) + 1)))) |
| 76 | 29, 65 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑋) |
| 77 | | metcl 24342 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 78 | 20, 54, 76, 77 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 79 | 78 | resqcld 14165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
| 80 | 16, 49, 50, 25, 14, 23, 53, 17, 55, 56 | minvecolem1 30893 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 81 | | 0re 11263 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
| 82 | | breq1 5146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
| 83 | 82 | ralbidv 3178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 84 | 83 | rspcev 3622 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 85 | 81, 84 | mpan 690 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 86 | 85 | 3anim3i 1155 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧
∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤)) |
| 87 | | infrecl 12250 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈
ℝ) |
| 88 | 80, 86, 87 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈
ℝ) |
| 89 | 57, 88 | eqeltrid 2845 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 90 | 89 | resqcld 14165 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
| 91 | 90 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ) |
| 92 | 36 | nnrecred 12317 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈
ℝ) |
| 93 | 91, 92 | readdcld 11290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ) |
| 94 | 91, 61 | readdcld 11290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ) |
| 95 | 72 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 96 | 36, 95 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 97 | | eluzle 12891 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛) |
| 99 | 42 | rpregt0d 13083 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4
/ (𝑥↑2))) + 1) ∈
ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1))) |
| 100 | | nnre 12273 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
| 101 | | nngt0 12297 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
| 102 | 100, 101 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 <
𝑛)) |
| 103 | 36, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛)) |
| 104 | | lerec 12151 |
. . . . . . . . . . . 12
⊢
(((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 <
((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1)))) |
| 105 | 99, 103, 104 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4
/ (𝑥↑2))) + 1) ≤
𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1)))) |
| 106 | 98, 105 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1))) |
| 107 | 92, 61, 91, 106 | leadd2dd 11878 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
| 108 | 79, 93, 94, 96, 107 | letrd 11418 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
| 109 | 16, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108 | minvecolem2 30894 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) ≤ (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1)))) |
| 110 | | rpdivcl 13060 |
. . . . . . . . . 10
⊢ (((𝑥↑2) ∈
ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈
ℝ+) |
| 111 | 47, 3, 110 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈
ℝ+) |
| 112 | | rpcnne0 13053 |
. . . . . . . . . . . 12
⊢ ((𝑥↑2) ∈
ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠
0)) |
| 113 | 47, 112 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠
0)) |
| 114 | | rpcnne0 13053 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0)) |
| 115 | 3, 114 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (4 ∈
ℂ ∧ 4 ≠ 0) |
| 116 | | recdiv 11973 |
. . . . . . . . . . 11
⊢ ((((𝑥↑2) ∈ ℂ ∧
(𝑥↑2) ≠ 0) ∧ (4
∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2))) |
| 117 | 113, 115,
116 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2))) |
| 118 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈
ℝ+) |
| 119 | 118 | rpred 13077 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈
ℝ) |
| 120 | | flltp1 13840 |
. . . . . . . . . . 11
⊢ ((4 /
(𝑥↑2)) ∈ ℝ
→ (4 / (𝑥↑2))
< ((⌊‘(4 / (𝑥↑2))) + 1)) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) <
((⌊‘(4 / (𝑥↑2))) + 1)) |
| 122 | 117, 121 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) <
((⌊‘(4 / (𝑥↑2))) + 1)) |
| 123 | 111, 42, 122 | ltrec1d 13097 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)) |
| 124 | 1, 2 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (4 ∈
ℝ ∧ 0 < 4) |
| 125 | | ltmuldiv2 12142 |
. . . . . . . . . 10
⊢ (((1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4
∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 /
(𝑥↑2))) + 1))) <
(𝑥↑2) ↔ (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))) |
| 126 | 124, 125 | mp3an3 1452 |
. . . . . . . . 9
⊢ (((1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) →
((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 /
(𝑥↑2))) + 1)) <
((𝑥↑2) /
4))) |
| 127 | 61, 48, 126 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 /
(𝑥↑2))) + 1)) <
((𝑥↑2) /
4))) |
| 128 | 123, 127 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2)) |
| 129 | 41, 46, 48, 109, 128 | lelttrd 11419 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2)) |
| 130 | | metge0 24355 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
| 131 | 20, 34, 38, 130 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 /
(𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
| 132 | | rprege0 13050 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
| 133 | 132 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 134 | | lt2sq 14173 |
. . . . . . 7
⊢
(((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 /
(𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2))) |
| 135 | 40, 131, 133, 134 | syl21anc 838 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2))) |
| 136 | 129, 135 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) |
| 137 | 136 | ralrimiva 3146 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) |
| 138 | | fveq2 6906 |
. . . . . 6
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) →
(ℤ≥‘𝑗) =
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) |
| 139 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹‘𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) +
1))) |
| 140 | 139 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
| 141 | 140 | breq1d 5153 |
. . . . . 6
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥)) |
| 142 | 138, 141 | raleqbidv 3346 |
. . . . 5
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) →
(∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥 ↔ ∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥)) |
| 143 | 142 | rspcev 3622 |
. . . 4
⊢
((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧
∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
| 144 | 13, 137, 143 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
| 145 | 144 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
| 146 | | nnuz 12921 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 147 | 16, 17 | imsxmet 30711 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
| 148 | 14, 15, 147 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 149 | | 1zzd 12648 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
| 150 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
| 151 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
| 152 | 30, 28 | fssd 6753 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| 153 | 146, 148,
149, 150, 151, 152 | iscauf 25314 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 154 | 145, 153 | mpbird 257 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |