Step | Hyp | Ref
| Expression |
1 | | 4re 11987 |
. . . . . . 7
⊢ 4 ∈
ℝ |
2 | | 4pos 12010 |
. . . . . . 7
⊢ 0 <
4 |
3 | 1, 2 | elrpii 12662 |
. . . . . 6
⊢ 4 ∈
ℝ+ |
4 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
5 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
6 | | rpexpcl 13729 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
7 | 4, 5, 6 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
8 | | rpdivcl 12684 |
. . . . . 6
⊢ ((4
∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) →
(4 / (𝑥↑2)) ∈
ℝ+) |
9 | 3, 7, 8 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (4 /
(𝑥↑2)) ∈
ℝ+) |
10 | | rprege0 12674 |
. . . . 5
⊢ ((4 /
(𝑥↑2)) ∈
ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 /
(𝑥↑2)))) |
11 | | flge0nn0 13468 |
. . . . 5
⊢ (((4 /
(𝑥↑2)) ∈ ℝ
∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈
ℕ0) |
12 | | nn0p1nn 12202 |
. . . . 5
⊢
((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℕ) |
13 | 9, 10, 11, 12 | 4syl 19 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℕ) |
14 | | minveco.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈
CPreHilOLD) |
15 | | phnv 29077 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 ∈
NrmCVec) |
16 | | minveco.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (BaseSet‘𝑈) |
17 | | minveco.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (IndMet‘𝑈) |
18 | 16, 17 | imsmet 28954 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
19 | 14, 15, 18 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
20 | 19 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋)) |
21 | 14, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
22 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢
((SubSp‘𝑈)
∩ CBan) ⊆ (SubSp‘𝑈) |
23 | | minveco.w |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
24 | 22, 23 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
25 | | minveco.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = (BaseSet‘𝑊) |
26 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(SubSp‘𝑈) =
(SubSp‘𝑈) |
27 | 16, 25, 26 | sspba 28990 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
28 | 21, 24, 27 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
29 | 28 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌 ⊆ 𝑋) |
30 | | minveco.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌) |
32 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ∈
ℕ) |
33 | 31, 32 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌) |
34 | 29, 33 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋) |
35 | | eluznn 12587 |
. . . . . . . . . . . 12
⊢
((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ) |
36 | 13, 35 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ) |
37 | 31, 36 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑌) |
38 | 29, 37 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑋) |
39 | | metcl 23393 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ) |
40 | 20, 34, 38, 39 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ) |
41 | 40 | resqcld 13893 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
42 | 32 | nnrpd 12699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ∈
ℝ+) |
43 | 42 | rpreccld 12711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
44 | | rpmulcl 12682 |
. . . . . . . . 9
⊢ ((4
∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
→ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ+) |
45 | 3, 43, 44 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ+) |
46 | 45 | rpred 12701 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ) |
47 | 7 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈
ℝ+) |
48 | 47 | rpred 12701 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ) |
49 | | minveco.m |
. . . . . . . 8
⊢ 𝑀 = ( −𝑣
‘𝑈) |
50 | | minveco.n |
. . . . . . . 8
⊢ 𝑁 =
(normCV‘𝑈) |
51 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈
CPreHilOLD) |
52 | 23 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
53 | | minveco.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
54 | 53 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴 ∈ 𝑋) |
55 | | minveco.j |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
56 | | minveco.r |
. . . . . . . 8
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
57 | | minveco.s |
. . . . . . . 8
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
58 | 13 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(4 / (𝑥↑2))) + 1) ∈
ℝ+) |
59 | 58 | rpreccld 12711 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
60 | 59 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ+) |
61 | 60 | rpred 12701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈
ℝ) |
62 | 60 | rpge0d 12705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) |
63 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌) |
64 | 63 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑌) |
65 | 36, 64 | syldan 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑌) |
66 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹‘𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) +
1))) |
67 | 66 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹‘𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) +
1)))) |
68 | 67 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹‘𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) +
1)))↑2)) |
69 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 /
𝑛) = (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) |
70 | 69 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
71 | 68, 70 | breq12d 5083 |
. . . . . . . . 9
⊢ (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤
((𝑆↑2) + (1 /
((⌊‘(4 / (𝑥↑2))) + 1))))) |
72 | | minveco.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
73 | 72 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
74 | 73 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
75 | 71, 74, 32 | rspcdva 3554 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤
((𝑆↑2) + (1 /
((⌊‘(4 / (𝑥↑2))) + 1)))) |
76 | 29, 65 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘𝑛) ∈ 𝑋) |
77 | | metcl 23393 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
78 | 20, 54, 76, 77 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
79 | 78 | resqcld 13893 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
80 | 16, 49, 50, 25, 14, 23, 53, 17, 55, 56 | minvecolem1 29137 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
81 | | 0re 10908 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
82 | | breq1 5073 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
83 | 82 | ralbidv 3120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
84 | 83 | rspcev 3552 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
85 | 81, 84 | mpan 686 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
86 | 85 | 3anim3i 1152 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧
∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤)) |
87 | | infrecl 11887 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈
ℝ) |
88 | 80, 86, 87 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈
ℝ) |
89 | 57, 88 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ ℝ) |
90 | 89 | resqcld 13893 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
91 | 90 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ) |
92 | 36 | nnrecred 11954 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈
ℝ) |
93 | 91, 92 | readdcld 10935 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ) |
94 | 91, 61 | readdcld 10935 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈
ℝ) |
95 | 72 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
96 | 36, 95 | syldan 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
97 | | eluzle 12524 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛) |
98 | 97 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛) |
99 | 42 | rpregt0d 12707 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4
/ (𝑥↑2))) + 1) ∈
ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1))) |
100 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
101 | | nngt0 11934 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
102 | 100, 101 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 <
𝑛)) |
103 | 36, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛)) |
104 | | lerec 11788 |
. . . . . . . . . . . 12
⊢
(((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 <
((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 /
(𝑥↑2))) + 1) ≤
𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1)))) |
105 | 99, 103, 104 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4
/ (𝑥↑2))) + 1) ≤
𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1)))) |
106 | 98, 105 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 /
(𝑥↑2))) +
1))) |
107 | 92, 61, 91, 106 | leadd2dd 11520 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
108 | 79, 93, 94, 96, 107 | letrd 11062 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) +
1)))) |
109 | 16, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108 | minvecolem2 29138 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) ≤ (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1)))) |
110 | | rpdivcl 12684 |
. . . . . . . . . 10
⊢ (((𝑥↑2) ∈
ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈
ℝ+) |
111 | 47, 3, 110 | sylancl 585 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈
ℝ+) |
112 | | rpcnne0 12677 |
. . . . . . . . . . . 12
⊢ ((𝑥↑2) ∈
ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠
0)) |
113 | 47, 112 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠
0)) |
114 | | rpcnne0 12677 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0)) |
115 | 3, 114 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (4 ∈
ℂ ∧ 4 ≠ 0) |
116 | | recdiv 11611 |
. . . . . . . . . . 11
⊢ ((((𝑥↑2) ∈ ℂ ∧
(𝑥↑2) ≠ 0) ∧ (4
∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2))) |
117 | 113, 115,
116 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2))) |
118 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈
ℝ+) |
119 | 118 | rpred 12701 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈
ℝ) |
120 | | flltp1 13448 |
. . . . . . . . . . 11
⊢ ((4 /
(𝑥↑2)) ∈ ℝ
→ (4 / (𝑥↑2))
< ((⌊‘(4 / (𝑥↑2))) + 1)) |
121 | 119, 120 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) <
((⌊‘(4 / (𝑥↑2))) + 1)) |
122 | 117, 121 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) <
((⌊‘(4 / (𝑥↑2))) + 1)) |
123 | 111, 42, 122 | ltrec1d 12721 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)) |
124 | 1, 2 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (4 ∈
ℝ ∧ 0 < 4) |
125 | | ltmuldiv2 11779 |
. . . . . . . . . 10
⊢ (((1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4
∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 /
(𝑥↑2))) + 1))) <
(𝑥↑2) ↔ (1 /
((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))) |
126 | 124, 125 | mp3an3 1448 |
. . . . . . . . 9
⊢ (((1 /
((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) →
((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 /
(𝑥↑2))) + 1)) <
((𝑥↑2) /
4))) |
127 | 61, 48, 126 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 /
(𝑥↑2))) + 1)) <
((𝑥↑2) /
4))) |
128 | 123, 127 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 /
((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2)) |
129 | 41, 46, 48, 109, 128 | lelttrd 11063 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2)) |
130 | | metge0 23406 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
131 | 20, 34, 38, 130 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 /
(𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
132 | | rprege0 12674 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
133 | 132 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
134 | | lt2sq 13780 |
. . . . . . 7
⊢
(((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 /
(𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2))) |
135 | 40, 131, 133, 134 | syl21anc 834 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))↑2) < (𝑥↑2))) |
136 | 129, 135 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) |
137 | 136 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) |
138 | | fveq2 6756 |
. . . . . 6
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) →
(ℤ≥‘𝑗) =
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))) |
139 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹‘𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) +
1))) |
140 | 139 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛))) |
141 | 140 | breq1d 5080 |
. . . . . 6
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥)) |
142 | 138, 141 | raleqbidv 3327 |
. . . . 5
⊢ (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) →
(∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥 ↔ ∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥)) |
143 | 142 | rspcev 3552 |
. . . 4
⊢
((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧
∀𝑛 ∈
(ℤ≥‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹‘𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
144 | 13, 137, 143 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
145 | 144 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
146 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
147 | 16, 17 | imsxmet 28955 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
148 | 14, 15, 147 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
149 | | 1zzd 12281 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
150 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
151 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
152 | 30, 28 | fssd 6602 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
153 | 146, 148,
149, 150, 151, 152 | iscauf 24349 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
154 | 145, 153 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |