MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3 Structured version   Visualization version   GIF version

Theorem minvecolem3 30908
Description: Lemma for minveco 30916. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem3 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem3
Dummy variables 𝑗 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12377 . . . . . . 7 4 ∈ ℝ
2 4pos 12400 . . . . . . 7 0 < 4
31, 2elrpii 13060 . . . . . 6 4 ∈ ℝ+
4 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 2z 12675 . . . . . . 7 2 ∈ ℤ
6 rpexpcl 14131 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
74, 5, 6sylancl 585 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
8 rpdivcl 13082 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
93, 7, 8sylancr 586 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
10 rprege0 13072 . . . . 5 ((4 / (𝑥↑2)) ∈ ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))))
11 flge0nn0 13871 . . . . 5 (((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈ ℕ0)
12 nn0p1nn 12592 . . . . 5 ((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
139, 10, 11, 124syl 19 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
14 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
15 phnv 30846 . . . . . . . . . . 11 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
16 minveco.x . . . . . . . . . . . 12 𝑋 = (BaseSet‘𝑈)
17 minveco.d . . . . . . . . . . . 12 𝐷 = (IndMet‘𝑈)
1816, 17imsmet 30723 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
1914, 15, 183syl 18 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
2019ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋))
2114, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
22 inss1 4258 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
23 minveco.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
2422, 23sselid 4006 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
25 minveco.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
26 eqid 2740 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
2716, 25, 26sspba 30759 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
2821, 24, 27syl2anc 583 . . . . . . . . . . 11 (𝜑𝑌𝑋)
2928ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌𝑋)
30 minveco.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶𝑌)
3130ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌)
3213adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
3331, 32ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌)
3429, 33sseldd 4009 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋)
35 eluznn 12983 . . . . . . . . . . . 12 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3613, 35sylan 579 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3731, 36ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
3829, 37sseldd 4009 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
39 metcl 24363 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4020, 34, 38, 39syl3anc 1371 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4140resqcld 14175 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ∈ ℝ)
4232nnrpd 13097 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
4342rpreccld 13109 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
44 rpmulcl 13080 . . . . . . . . 9 ((4 ∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
453, 43, 44sylancr 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
4645rpred 13099 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
477adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ+)
4847rpred 13099 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ)
49 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
50 minveco.n . . . . . . . 8 𝑁 = (normCV𝑈)
5114ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈ CPreHilOLD)
5223ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
53 minveco.a . . . . . . . . 9 (𝜑𝐴𝑋)
5453ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴𝑋)
55 minveco.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
56 minveco.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
57 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
5813nnrpd 13097 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
5958rpreccld 13109 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6059adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6160rpred 13099 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ)
6260rpge0d 13103 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
6330adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌)
6463ffvelcdmda 7118 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
6536, 64syldan 590 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
66 fveq2 6920 . . . . . . . . . . . 12 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
6766oveq2d 7464 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))))
6867oveq1d 7463 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2))
69 oveq2 7456 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 / 𝑛) = (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
7069oveq2d 7464 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7168, 70breq12d 5179 . . . . . . . . 9 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))))
72 minveco.1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7372ralrimiva 3152 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7473ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7571, 74, 32rspcdva 3636 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7629, 65sseldd 4009 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
77 metcl 24363 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7820, 54, 76, 77syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7978resqcld 14175 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
8016, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 30906 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
81 0re 11292 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
82 breq1 5169 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8382ralbidv 3184 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8483rspcev 3635 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8581, 84mpan 689 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
86853anim3i 1154 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤))
87 infrecl 12277 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
8880, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
8957, 88eqeltrid 2848 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
9089resqcld 14175 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℝ)
9190ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ)
9236nnrecred 12344 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈ ℝ)
9391, 92readdcld 11319 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
9491, 61readdcld 11319 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
9572adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
9636, 95syldan 590 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
97 eluzle 12916 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9897adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9942rpregt0d 13105 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)))
100 nnre 12300 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
101 nngt0 12324 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 𝑛)
102100, 101jca 511 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
10336, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
104 lerec 12178 . . . . . . . . . . . 12 (((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10599, 103, 104syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10698, 105mpbid 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
10792, 61, 91, 106leadd2dd 11905 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10879, 93, 94, 96, 107letrd 11447 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10916, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108minvecolem2 30907 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ≤ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
110 rpdivcl 13082 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈ ℝ+)
11147, 3, 110sylancl 585 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈ ℝ+)
112 rpcnne0 13075 . . . . . . . . . . . 12 ((𝑥↑2) ∈ ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
11347, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
114 rpcnne0 13075 . . . . . . . . . . . 12 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
1153, 114ax-mp 5 . . . . . . . . . . 11 (4 ∈ ℂ ∧ 4 ≠ 0)
116 recdiv 12000 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
117113, 115, 116sylancl 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
1189adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ+)
119118rpred 13099 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ)
120 flltp1 13851 . . . . . . . . . . 11 ((4 / (𝑥↑2)) ∈ ℝ → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
121119, 120syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
122117, 121eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) < ((⌊‘(4 / (𝑥↑2))) + 1))
123111, 42, 122ltrec1d 13119 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))
1241, 2pm3.2i 470 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
125 ltmuldiv2 12169 . . . . . . . . . 10 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
126124, 125mp3an3 1450 . . . . . . . . 9 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
12761, 48, 126syl2anc 583 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
128123, 127mpbird 257 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2))
12941, 46, 48, 109, 128lelttrd 11448 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2))
130 metge0 24376 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
13120, 34, 38, 130syl3anc 1371 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
132 rprege0 13072 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
133132ad2antlr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
134 lt2sq 14183 . . . . . . 7 (((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
13540, 131, 133, 134syl21anc 837 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
136129, 135mpbird 257 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
137136ralrimiva 3152 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
138 fveq2 6920 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)))
139 fveq2 6920 . . . . . . . 8 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
140139oveq1d 7463 . . . . . . 7 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹𝑗)𝐷(𝐹𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
141140breq1d 5176 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
142138, 141raleqbidv 3354 . . . . 5 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
143142rspcev 3635 . . . 4 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
14413, 137, 143syl2anc 583 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
145144ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
146 nnuz 12946 . . 3 ℕ = (ℤ‘1)
14716, 17imsxmet 30724 . . . 4 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
14814, 15, 1473syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
149 1zzd 12674 . . 3 (𝜑 → 1 ∈ ℤ)
150 eqidd 2741 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
151 eqidd 2741 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
15230, 28fssd 6764 . . 3 (𝜑𝐹:ℕ⟶𝑋)
153146, 148, 149, 150, 151, 152iscauf 25333 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
154145, 153mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  4c4 12350  0cn0 12553  cz 12639  cuz 12903  +crp 13057  cfl 13841  cexp 14112  ∞Metcxmet 21372  Metcmet 21373  MetOpencmopn 21377  Cauccau 25306  NrmCVeccnv 30616  BaseSetcba 30618  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-cau 25309  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-ssp 30754  df-ph 30845  df-cbn 30895
This theorem is referenced by:  minvecolem4a  30909
  Copyright terms: Public domain W3C validator