MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3 Structured version   Visualization version   GIF version

Theorem minvecolem3 30820
Description: Lemma for minveco 30828. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem3 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem3
Dummy variables 𝑗 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12212 . . . . . . 7 4 ∈ ℝ
2 4pos 12235 . . . . . . 7 0 < 4
31, 2elrpii 12896 . . . . . 6 4 ∈ ℝ+
4 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 2z 12507 . . . . . . 7 2 ∈ ℤ
6 rpexpcl 13987 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
74, 5, 6sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
8 rpdivcl 12920 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝑥↑2) ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
93, 7, 8sylancr 587 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (4 / (𝑥↑2)) ∈ ℝ+)
10 rprege0 12909 . . . . 5 ((4 / (𝑥↑2)) ∈ ℝ+ → ((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))))
11 flge0nn0 13724 . . . . 5 (((4 / (𝑥↑2)) ∈ ℝ ∧ 0 ≤ (4 / (𝑥↑2))) → (⌊‘(4 / (𝑥↑2))) ∈ ℕ0)
12 nn0p1nn 12423 . . . . 5 ((⌊‘(4 / (𝑥↑2))) ∈ ℕ0 → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
139, 10, 11, 124syl 19 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
14 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
15 phnv 30758 . . . . . . . . . . 11 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
16 minveco.x . . . . . . . . . . . 12 𝑋 = (BaseSet‘𝑈)
17 minveco.d . . . . . . . . . . . 12 𝐷 = (IndMet‘𝑈)
1816, 17imsmet 30635 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
1914, 15, 183syl 18 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
2019ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐷 ∈ (Met‘𝑋))
2114, 15syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
22 inss1 4188 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
23 minveco.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
2422, 23sselid 3933 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
25 minveco.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
26 eqid 2729 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
2716, 25, 26sspba 30671 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
2821, 24, 27syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
2928ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑌𝑋)
30 minveco.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶𝑌)
3130ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐹:ℕ⟶𝑌)
3213adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ)
3331, 32ffvelcdmd 7019 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑌)
3429, 33sseldd 3936 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋)
35 eluznn 12819 . . . . . . . . . . . 12 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3613, 35sylan 580 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑛 ∈ ℕ)
3731, 36ffvelcdmd 7019 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
3829, 37sseldd 3936 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
39 metcl 24218 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4020, 34, 38, 39syl3anc 1373 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ)
4140resqcld 14032 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ∈ ℝ)
4232nnrpd 12935 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
4342rpreccld 12947 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
44 rpmulcl 12918 . . . . . . . . 9 ((4 ∈ ℝ+ ∧ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
453, 43, 44sylancr 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ+)
4645rpred 12937 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
477adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ+)
4847rpred 12937 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥↑2) ∈ ℝ)
49 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
50 minveco.n . . . . . . . 8 𝑁 = (normCV𝑈)
5114ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑈 ∈ CPreHilOLD)
5223ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
53 minveco.a . . . . . . . . 9 (𝜑𝐴𝑋)
5453ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 𝐴𝑋)
55 minveco.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
56 minveco.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
57 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
5813nnrpd 12935 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ+)
5958rpreccld 12947 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6059adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ+)
6160rpred 12937 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ)
6260rpge0d 12941 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
6330adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:ℕ⟶𝑌)
6463ffvelcdmda 7018 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
6536, 64syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑌)
66 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑛) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
6766oveq2d 7365 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐴𝐷(𝐹𝑛)) = (𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))))
6867oveq1d 7364 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐴𝐷(𝐹𝑛))↑2) = ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2))
69 oveq2 7357 . . . . . . . . . . 11 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (1 / 𝑛) = (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
7069oveq2d 7365 . . . . . . . . . 10 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7168, 70breq12d 5105 . . . . . . . . 9 (𝑛 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))))
72 minveco.1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7372ralrimiva 3121 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7473ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
7571, 74, 32rspcdva 3578 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
7629, 65sseldd 3936 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐹𝑛) ∈ 𝑋)
77 metcl 24218 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7820, 54, 76, 77syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
7978resqcld 14032 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
8016, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 30818 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
81 0re 11117 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
82 breq1 5095 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8382ralbidv 3152 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8483rspcev 3577 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8581, 84mpan 690 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 0 ≤ 𝑤 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
86853anim3i 1154 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤))
87 infrecl 12107 . . . . . . . . . . . . . 14 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
8880, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
8957, 88eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
9089resqcld 14032 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℝ)
9190ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑆↑2) ∈ ℝ)
9236nnrecred 12179 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ∈ ℝ)
9391, 92readdcld 11144 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
9491, 61readdcld 11144 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) ∈ ℝ)
9572adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
9636, 95syldan 591 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
97 eluzle 12748 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9897adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛)
9942rpregt0d 12943 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)))
100 nnre 12135 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
101 nngt0 12159 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 𝑛)
102100, 101jca 511 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
10336, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
104 lerec 12008 . . . . . . . . . . . 12 (((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℝ ∧ 0 < ((⌊‘(4 / (𝑥↑2))) + 1)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10599, 103, 104syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((⌊‘(4 / (𝑥↑2))) + 1) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10698, 105mpbid 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / 𝑛) ≤ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)))
10792, 61, 91, 106leadd2dd 11735 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10879, 93, 94, 96, 107letrd 11273 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
10916, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 75, 108minvecolem2 30819 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) ≤ (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))))
110 rpdivcl 12920 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝑥↑2) / 4) ∈ ℝ+)
11147, 3, 110sylancl 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) / 4) ∈ ℝ+)
112 rpcnne0 12912 . . . . . . . . . . . 12 ((𝑥↑2) ∈ ℝ+ → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
11347, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0))
114 rpcnne0 12912 . . . . . . . . . . . 12 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
1153, 114ax-mp 5 . . . . . . . . . . 11 (4 ∈ ℂ ∧ 4 ≠ 0)
116 recdiv 11830 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℂ ∧ (𝑥↑2) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
117113, 115, 116sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) = (4 / (𝑥↑2)))
1189adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ+)
119118rpred 12937 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) ∈ ℝ)
120 flltp1 13704 . . . . . . . . . . 11 ((4 / (𝑥↑2)) ∈ ℝ → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
121119, 120syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 / (𝑥↑2)) < ((⌊‘(4 / (𝑥↑2))) + 1))
122117, 121eqbrtrd 5114 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((𝑥↑2) / 4)) < ((⌊‘(4 / (𝑥↑2))) + 1))
123111, 42, 122ltrec1d 12957 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4))
1241, 2pm3.2i 470 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
125 ltmuldiv2 11999 . . . . . . . . . 10 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
126124, 125mp3an3 1452 . . . . . . . . 9 (((1 / ((⌊‘(4 / (𝑥↑2))) + 1)) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
12761, 48, 126syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2) ↔ (1 / ((⌊‘(4 / (𝑥↑2))) + 1)) < ((𝑥↑2) / 4)))
128123, 127mpbird 257 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (4 · (1 / ((⌊‘(4 / (𝑥↑2))) + 1))) < (𝑥↑2))
12941, 46, 48, 109, 128lelttrd 11274 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2))
130 metge0 24231 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
13120, 34, 38, 130syl3anc 1373 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
132 rprege0 12909 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
133132ad2antlr 727 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
134 lt2sq 14040 . . . . . . 7 (((((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) ∈ ℝ ∧ 0 ≤ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
13540, 131, 133, 134syl21anc 837 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥 ↔ (((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛))↑2) < (𝑥↑2)))
136129, 135mpbird 257 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))) → ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
137136ralrimiva 3121 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥)
138 fveq2 6822 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1)))
139 fveq2 6822 . . . . . . . 8 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (𝐹𝑗) = (𝐹‘((⌊‘(4 / (𝑥↑2))) + 1)))
140139oveq1d 7364 . . . . . . 7 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → ((𝐹𝑗)𝐷(𝐹𝑛)) = ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)))
141140breq1d 5102 . . . . . 6 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
142138, 141raleqbidv 3309 . . . . 5 (𝑗 = ((⌊‘(4 / (𝑥↑2))) + 1) → (∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥 ↔ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥))
143142rspcev 3577 . . . 4 ((((⌊‘(4 / (𝑥↑2))) + 1) ∈ ℕ ∧ ∀𝑛 ∈ (ℤ‘((⌊‘(4 / (𝑥↑2))) + 1))((𝐹‘((⌊‘(4 / (𝑥↑2))) + 1))𝐷(𝐹𝑛)) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
14413, 137, 143syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
145144ralrimiva 3121 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
146 nnuz 12778 . . 3 ℕ = (ℤ‘1)
14716, 17imsxmet 30636 . . . 4 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
14814, 15, 1473syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
149 1zzd 12506 . . 3 (𝜑 → 1 ∈ ℤ)
150 eqidd 2730 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
151 eqidd 2730 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
15230, 28fssd 6669 . . 3 (𝜑𝐹:ℕ⟶𝑋)
153146, 148, 149, 150, 151, 152iscauf 25178 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
154145, 153mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3902  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  infcinf 9331  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  cn 12128  2c2 12183  4c4 12185  0cn0 12384  cz 12471  cuz 12735  +crp 12893  cfl 13694  cexp 13968  ∞Metcxmet 21246  Metcmet 21247  MetOpencmopn 21251  Cauccau 25151  NrmCVeccnv 30528  BaseSetcba 30530  𝑣 cnsb 30533  normCVcnmcv 30534  IndMetcims 30535  SubSpcss 30665  CPreHilOLDccphlo 30756  CBanccbn 30806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-cau 25154  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-ssp 30666  df-ph 30757  df-cbn 30807
This theorem is referenced by:  minvecolem4a  30821
  Copyright terms: Public domain W3C validator