MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3 Structured version   Visualization version   GIF version

Theorem numclwwlk3 29902
Description: Statement 12 in [Huneke] p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 29878) and with v(n-2) =/= v(n) (see numclwwlk2 29898): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k-1)f(n-2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 6-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk3.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
numclwwlk3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) = (((𝐾 βˆ’ 1) Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾↑(𝑁 βˆ’ 2))))

Proof of Theorem numclwwlk3
Dummy variables 𝑛 𝑣 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) β†’ 𝐺 RegUSGraph 𝐾)
2 simp1 1135 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑉 ∈ Fin)
3 numclwwlk3.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
43finrusgrfusgr 29086 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝐺 ∈ FinUSGraph)
51, 2, 4syl2an 595 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ FinUSGraph)
6 simpr2 1194 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
7 uzuzle23 12878 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
873ad2ant3 1134 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
98adantl 481 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
10 eqid 2731 . . . 4 (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
11 eqid 2731 . . . 4 (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
1210, 11numclwwlk3lem2 29901 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) = ((β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})𝑁)) + (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁))))
135, 6, 9, 12syl21anc 835 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) = ((β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})𝑁)) + (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁))))
14 eqid 2731 . . . 4 (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)}) = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
153, 14, 11numclwwlk2 29898 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})𝑁)) = ((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
161, 2anim12ci 613 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾))
17 3simpc 1149 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
1817adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
19 eqid 2731 . . . . 5 (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
203, 10, 19numclwwlk1 29878 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
2116, 18, 20syl2anc 583 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
2215, 21oveq12d 7430 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})𝑁)) + (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁))) = (((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))))
23 simpll 764 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 RegUSGraph 𝐾)
24 ne0i 4335 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ 𝑉 β‰  βˆ…)
25243ad2ant2 1133 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑉 β‰  βˆ…)
2625adantl 481 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑉 β‰  βˆ…)
273frusgrnn0 29092 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 β‰  βˆ…) β†’ 𝐾 ∈ β„•0)
285, 23, 26, 27syl3anc 1370 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐾 ∈ β„•0)
2928nn0cnd 12539 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐾 ∈ β„‚)
30 uz3m2nn 12880 . . . . . 6 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
31303anim3i 1153 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•))
3231adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•))
333clwwlknonfin 29611 . . . . 5 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
34333ad2ant1 1132 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
35 hashcl 14321 . . . . 5 ((𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ∈ β„•0)
3635nn0cnd 12539 . . . 4 ((𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ∈ β„‚)
3732, 34, 363syl 18 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ∈ β„‚)
38 numclwwlk3lem1 29899 . . 3 ((𝐾 ∈ β„‚ ∧ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ∈ β„‚ ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))) = (((𝐾 βˆ’ 1) Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾↑(𝑁 βˆ’ 2))))
3929, 37, 9, 38syl3anc 1370 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))) = (((𝐾 βˆ’ 1) Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾↑(𝑁 βˆ’ 2))))
4013, 22, 393eqtrd 2775 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) = (((𝐾 βˆ’ 1) Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) + (𝐾↑(𝑁 βˆ’ 2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  {crab 3431  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412   ∈ cmpo 7414  Fincfn 8942  β„‚cc 11111  0cc0 11113  1c1 11114   + caddc 11116   Β· cmul 11118   βˆ’ cmin 11449  β„•cn 12217  2c2 12272  3c3 12273  β„•0cn0 12477  β„€β‰₯cuz 12827  β†‘cexp 14032  β™―chash 14295  lastSclsw 14517  Vtxcvtx 28520  FinUSGraphcfusgr 28837   RegUSGraph crusgr 29077   WWalksN cwwlksn 29344  ClWWalksNOncclwwlknon 29604   FriendGraph cfrgr 29775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-rp 12980  df-xadd 13098  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-word 14470  df-lsw 14518  df-concat 14526  df-s1 14551  df-substr 14596  df-pfx 14626  df-s2 14804  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-vtx 28522  df-iedg 28523  df-edg 28572  df-uhgr 28582  df-ushgr 28583  df-upgr 28606  df-umgr 28607  df-uspgr 28674  df-usgr 28675  df-fusgr 28838  df-nbgr 28854  df-vtxdg 28987  df-rgr 29078  df-rusgr 29079  df-wwlks 29348  df-wwlksn 29349  df-wwlksnon 29350  df-clwwlk 29499  df-clwwlkn 29542  df-clwwlknon 29605  df-frgr 29776
This theorem is referenced by:  numclwwlk5  29905
  Copyright terms: Public domain W3C validator