Step | Hyp | Ref
| Expression |
1 | | tmdcn2.2 |
. . . . 5
⊢ 𝐽 = (TopOpen‘𝐺) |
2 | | tmdcn2.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
3 | 1, 2 | tmdtopon 23213 |
. . . 4
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵)) |
4 | 3 | ad2antrr 722 |
. . 3
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝐽 ∈ (TopOn‘𝐵)) |
5 | | eqid 2739 |
. . . . . 6
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
6 | 1, 5 | tmdcn 23215 |
. . . . 5
⊢ (𝐺 ∈ TopMnd →
(+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
7 | 6 | ad2antrr 722 |
. . . 4
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
8 | | simpr1 1192 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑋 ∈ 𝐵) |
9 | | simpr2 1193 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑌 ∈ 𝐵) |
10 | 8, 9 | opelxpd 5626 |
. . . . 5
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
11 | | txtopon 22723 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) |
12 | 4, 4, 11 | syl2anc 583 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵))) |
13 | | toponuni 22044 |
. . . . . 6
⊢ ((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ∪ (𝐽 ×t 𝐽)) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐵 × 𝐵) = ∪ (𝐽 ×t 𝐽)) |
15 | 10, 14 | eleqtrd 2842 |
. . . 4
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 〈𝑋, 𝑌〉 ∈ ∪
(𝐽 ×t
𝐽)) |
16 | | eqid 2739 |
. . . . 5
⊢ ∪ (𝐽
×t 𝐽) =
∪ (𝐽 ×t 𝐽) |
17 | 16 | cncnpi 22410 |
. . . 4
⊢
(((+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ 〈𝑋, 𝑌〉 ∈ ∪
(𝐽 ×t
𝐽)) →
(+𝑓‘𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝑋, 𝑌〉)) |
18 | 7, 15, 17 | syl2anc 583 |
. . 3
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓‘𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝑋, 𝑌〉)) |
19 | | simplr 765 |
. . 3
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑈 ∈ 𝐽) |
20 | | tmdcn2.3 |
. . . . . 6
⊢ + =
(+g‘𝐺) |
21 | 2, 20, 5 | plusfval 18314 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
22 | 8, 9, 21 | syl2anc 583 |
. . . 4
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
23 | | simpr3 1194 |
. . . 4
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
24 | 22, 23 | eqeltrd 2840 |
. . 3
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓‘𝐺)𝑌) ∈ 𝑈) |
25 | 4, 4, 18, 19, 8, 9, 24 | txcnpi 22740 |
. 2
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈))) |
26 | | dfss3 3913 |
. . . . . . 7
⊢ ((𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈) ↔ ∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ (◡(+𝑓‘𝐺) “ 𝑈)) |
27 | | eleq1 2827 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (◡(+𝑓‘𝐺) “ 𝑈) ↔ 〈𝑥, 𝑦〉 ∈ (◡(+𝑓‘𝐺) “ 𝑈))) |
28 | 2, 5 | plusffn 18316 |
. . . . . . . . . 10
⊢
(+𝑓‘𝐺) Fn (𝐵 × 𝐵) |
29 | | elpreima 6929 |
. . . . . . . . . 10
⊢
((+𝑓‘𝐺) Fn (𝐵 × 𝐵) → (〈𝑥, 𝑦〉 ∈ (◡(+𝑓‘𝐺) “ 𝑈) ↔ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈))) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (◡(+𝑓‘𝐺) “ 𝑈) ↔ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈)) |
31 | 27, 30 | bitrdi 286 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (◡(+𝑓‘𝐺) “ 𝑈) ↔ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈))) |
32 | 31 | ralxp 5747 |
. . . . . . 7
⊢
(∀𝑧 ∈
(𝑢 × 𝑣)𝑧 ∈ (◡(+𝑓‘𝐺) “ 𝑈) ↔ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈)) |
33 | 26, 32 | bitri 274 |
. . . . . 6
⊢ ((𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈) ↔ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈)) |
34 | | opelxp 5624 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
35 | | df-ov 7271 |
. . . . . . . . . . 11
⊢ (𝑥(+𝑓‘𝐺)𝑦) = ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) |
36 | 2, 20, 5 | plusfval 18314 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+𝑓‘𝐺)𝑦) = (𝑥 + 𝑦)) |
37 | 35, 36 | eqtr3id 2793 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) = (𝑥 + 𝑦)) |
38 | 34, 37 | sylbi 216 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) = (𝑥 + 𝑦)) |
39 | 38 | eleq1d 2824 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) →
(((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈 ↔ (𝑥 + 𝑦) ∈ 𝑈)) |
40 | 39 | biimpa 476 |
. . . . . . 7
⊢
((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈) → (𝑥 + 𝑦) ∈ 𝑈) |
41 | 40 | 2ralimi 3089 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑢 ∀𝑦 ∈ 𝑣 (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ∧ ((+𝑓‘𝐺)‘〈𝑥, 𝑦〉) ∈ 𝑈) → ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈) |
42 | 33, 41 | sylbi 216 |
. . . . 5
⊢ ((𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈) → ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈) |
43 | 42 | 3anim3i 1152 |
. . . 4
⊢ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈)) → (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) |
44 | 43 | reximi 3176 |
. . 3
⊢
(∃𝑣 ∈
𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈)) → ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) |
45 | 44 | reximi 3176 |
. 2
⊢
(∃𝑢 ∈
𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡(+𝑓‘𝐺) “ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) |
46 | 25, 45 | syl 17 |
1
⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) |