MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Structured version   Visualization version   GIF version

Theorem tmdcn2 24081
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1 𝐵 = (Base‘𝐺)
tmdcn2.2 𝐽 = (TopOpen‘𝐺)
tmdcn2.3 + = (+g𝐺)
Assertion
Ref Expression
tmdcn2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐺   𝑢,𝐽,𝑣   𝑢,𝑈,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢)   + (𝑥,𝑦,𝑣,𝑢)   𝐽(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem tmdcn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5 𝐽 = (TopOpen‘𝐺)
2 tmdcn2.1 . . . . 5 𝐵 = (Base‘𝐺)
31, 2tmdtopon 24073 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
43ad2antrr 724 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝐽 ∈ (TopOn‘𝐵))
5 eqid 2726 . . . . . 6 (+𝑓𝐺) = (+𝑓𝐺)
61, 5tmdcn 24075 . . . . 5 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
76ad2antrr 724 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
8 simpr1 1191 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑋𝐵)
9 simpr2 1192 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑌𝐵)
108, 9opelxpd 5713 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 txtopon 23583 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
124, 4, 11syl2anc 582 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
13 toponuni 22904 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1412, 13syl 17 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1510, 14eleqtrd 2828 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽))
16 eqid 2726 . . . . 5 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
1716cncnpi 23270 . . . 4 (((+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
187, 15, 17syl2anc 582 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
19 simplr 767 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑈𝐽)
20 tmdcn2.3 . . . . . 6 + = (+g𝐺)
212, 20, 5plusfval 18635 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
228, 9, 21syl2anc 582 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
23 simpr3 1193 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
2422, 23eqeltrd 2826 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) ∈ 𝑈)
254, 4, 18, 19, 8, 9, 24txcnpi 23600 . 2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)))
26 dfss3 3967 . . . . . . 7 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈))
27 eleq1 2814 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈)))
282, 5plusffn 18637 . . . . . . . . . 10 (+𝑓𝐺) Fn (𝐵 × 𝐵)
29 elpreima 7063 . . . . . . . . . 10 ((+𝑓𝐺) Fn (𝐵 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3028, 29ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3127, 30bitrdi 286 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3231ralxp 5840 . . . . . . 7 (∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3326, 32bitri 274 . . . . . 6 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
34 opelxp 5710 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
35 df-ov 7419 . . . . . . . . . . 11 (𝑥(+𝑓𝐺)𝑦) = ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩)
362, 20, 5plusfval 18635 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (𝑥(+𝑓𝐺)𝑦) = (𝑥 + 𝑦))
3735, 36eqtr3id 2780 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3834, 37sylbi 216 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3938eleq1d 2811 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → (((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈 ↔ (𝑥 + 𝑦) ∈ 𝑈))
4039biimpa 475 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → (𝑥 + 𝑦) ∈ 𝑈)
41402ralimi 3113 . . . . . 6 (∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
4233, 41sylbi 216 . . . . 5 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
43423anim3i 1151 . . . 4 ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4443reximi 3074 . . 3 (∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4544reximi 3074 . 2 (∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4625, 45syl 17 1 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  wss 3946  cop 4629   cuni 4905   × cxp 5672  ccnv 5673  cima 5677   Fn wfn 6541  cfv 6546  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  TopOpenctopn 17431  +𝑓cplusf 18625  TopOnctopon 22900   Cn ccn 23216   CnP ccnp 23217   ×t ctx 23552  TopMndctmd 24062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-map 8849  df-topgen 17453  df-plusf 18627  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cn 23219  df-cnp 23220  df-tx 23554  df-tmd 24064
This theorem is referenced by:  tsmsxp  24147
  Copyright terms: Public domain W3C validator