MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Structured version   Visualization version   GIF version

Theorem tmdcn2 23999
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1 𝐵 = (Base‘𝐺)
tmdcn2.2 𝐽 = (TopOpen‘𝐺)
tmdcn2.3 + = (+g𝐺)
Assertion
Ref Expression
tmdcn2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐺   𝑢,𝐽,𝑣   𝑢,𝑈,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢)   + (𝑥,𝑦,𝑣,𝑢)   𝐽(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem tmdcn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5 𝐽 = (TopOpen‘𝐺)
2 tmdcn2.1 . . . . 5 𝐵 = (Base‘𝐺)
31, 2tmdtopon 23991 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
43ad2antrr 726 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝐽 ∈ (TopOn‘𝐵))
5 eqid 2731 . . . . . 6 (+𝑓𝐺) = (+𝑓𝐺)
61, 5tmdcn 23993 . . . . 5 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
76ad2antrr 726 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
8 simpr1 1195 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑋𝐵)
9 simpr2 1196 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑌𝐵)
108, 9opelxpd 5650 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 txtopon 23501 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
124, 4, 11syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
13 toponuni 22824 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1412, 13syl 17 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1510, 14eleqtrd 2833 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽))
16 eqid 2731 . . . . 5 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
1716cncnpi 23188 . . . 4 (((+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
187, 15, 17syl2anc 584 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
19 simplr 768 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑈𝐽)
20 tmdcn2.3 . . . . . 6 + = (+g𝐺)
212, 20, 5plusfval 18550 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
228, 9, 21syl2anc 584 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
23 simpr3 1197 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
2422, 23eqeltrd 2831 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) ∈ 𝑈)
254, 4, 18, 19, 8, 9, 24txcnpi 23518 . 2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)))
26 dfss3 3918 . . . . . . 7 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈))
27 eleq1 2819 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈)))
282, 5plusffn 18552 . . . . . . . . . 10 (+𝑓𝐺) Fn (𝐵 × 𝐵)
29 elpreima 6986 . . . . . . . . . 10 ((+𝑓𝐺) Fn (𝐵 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3028, 29ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3127, 30bitrdi 287 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3231ralxp 5776 . . . . . . 7 (∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3326, 32bitri 275 . . . . . 6 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
34 opelxp 5647 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
35 df-ov 7344 . . . . . . . . . . 11 (𝑥(+𝑓𝐺)𝑦) = ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩)
362, 20, 5plusfval 18550 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (𝑥(+𝑓𝐺)𝑦) = (𝑥 + 𝑦))
3735, 36eqtr3id 2780 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3834, 37sylbi 217 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3938eleq1d 2816 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → (((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈 ↔ (𝑥 + 𝑦) ∈ 𝑈))
4039biimpa 476 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → (𝑥 + 𝑦) ∈ 𝑈)
41402ralimi 3102 . . . . . 6 (∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
4233, 41sylbi 217 . . . . 5 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
43423anim3i 1154 . . . 4 ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4443reximi 3070 . . 3 (∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4544reximi 3070 . 2 (∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4625, 45syl 17 1 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cop 4577   cuni 4854   × cxp 5609  ccnv 5610  cima 5614   Fn wfn 6471  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  TopOpenctopn 17320  +𝑓cplusf 18540  TopOnctopon 22820   Cn ccn 23134   CnP ccnp 23135   ×t ctx 23470  TopMndctmd 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-topgen 17342  df-plusf 18542  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cn 23137  df-cnp 23138  df-tx 23472  df-tmd 23982
This theorem is referenced by:  tsmsxp  24065
  Copyright terms: Public domain W3C validator