MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Structured version   Visualization version   GIF version

Theorem tmdcn2 23813
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1 𝐡 = (Baseβ€˜πΊ)
tmdcn2.2 𝐽 = (TopOpenβ€˜πΊ)
tmdcn2.3 + = (+gβ€˜πΊ)
Assertion
Ref Expression
tmdcn2 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ βˆƒπ‘’ ∈ 𝐽 βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ))
Distinct variable groups:   𝑣,𝑒,π‘₯,𝑦,𝐺   𝑒,𝐽,𝑣   𝑒,π‘ˆ,𝑣,π‘₯,𝑦   𝑒,𝑋,𝑣   𝑒,π‘Œ,𝑣
Allowed substitution hints:   𝐡(π‘₯,𝑦,𝑣,𝑒)   + (π‘₯,𝑦,𝑣,𝑒)   𝐽(π‘₯,𝑦)   𝑋(π‘₯,𝑦)   π‘Œ(π‘₯,𝑦)

Proof of Theorem tmdcn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5 𝐽 = (TopOpenβ€˜πΊ)
2 tmdcn2.1 . . . . 5 𝐡 = (Baseβ€˜πΊ)
31, 2tmdtopon 23805 . . . 4 (𝐺 ∈ TopMnd β†’ 𝐽 ∈ (TopOnβ€˜π΅))
43ad2antrr 724 . . 3 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ 𝐽 ∈ (TopOnβ€˜π΅))
5 eqid 2732 . . . . . 6 (+π‘“β€˜πΊ) = (+π‘“β€˜πΊ)
61, 5tmdcn 23807 . . . . 5 (𝐺 ∈ TopMnd β†’ (+π‘“β€˜πΊ) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
76ad2antrr 724 . . . 4 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (+π‘“β€˜πΊ) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
8 simpr1 1194 . . . . . 6 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ 𝑋 ∈ 𝐡)
9 simpr2 1195 . . . . . 6 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ π‘Œ ∈ 𝐡)
108, 9opelxpd 5715 . . . . 5 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
11 txtopon 23315 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π΅) ∧ 𝐽 ∈ (TopOnβ€˜π΅)) β†’ (𝐽 Γ—t 𝐽) ∈ (TopOnβ€˜(𝐡 Γ— 𝐡)))
124, 4, 11syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (𝐽 Γ—t 𝐽) ∈ (TopOnβ€˜(𝐡 Γ— 𝐡)))
13 toponuni 22636 . . . . . 6 ((𝐽 Γ—t 𝐽) ∈ (TopOnβ€˜(𝐡 Γ— 𝐡)) β†’ (𝐡 Γ— 𝐡) = βˆͺ (𝐽 Γ—t 𝐽))
1412, 13syl 17 . . . . 5 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (𝐡 Γ— 𝐡) = βˆͺ (𝐽 Γ—t 𝐽))
1510, 14eleqtrd 2835 . . . 4 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ βˆͺ (𝐽 Γ—t 𝐽))
16 eqid 2732 . . . . 5 βˆͺ (𝐽 Γ—t 𝐽) = βˆͺ (𝐽 Γ—t 𝐽)
1716cncnpi 23002 . . . 4 (((+π‘“β€˜πΊ) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽) ∧ βŸ¨π‘‹, π‘ŒβŸ© ∈ βˆͺ (𝐽 Γ—t 𝐽)) β†’ (+π‘“β€˜πΊ) ∈ (((𝐽 Γ—t 𝐽) CnP 𝐽)β€˜βŸ¨π‘‹, π‘ŒβŸ©))
187, 15, 17syl2anc 584 . . 3 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (+π‘“β€˜πΊ) ∈ (((𝐽 Γ—t 𝐽) CnP 𝐽)β€˜βŸ¨π‘‹, π‘ŒβŸ©))
19 simplr 767 . . 3 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ π‘ˆ ∈ 𝐽)
20 tmdcn2.3 . . . . . 6 + = (+gβ€˜πΊ)
212, 20, 5plusfval 18572 . . . . 5 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋(+π‘“β€˜πΊ)π‘Œ) = (𝑋 + π‘Œ))
228, 9, 21syl2anc 584 . . . 4 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (𝑋(+π‘“β€˜πΊ)π‘Œ) = (𝑋 + π‘Œ))
23 simpr3 1196 . . . 4 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (𝑋 + π‘Œ) ∈ π‘ˆ)
2422, 23eqeltrd 2833 . . 3 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ (𝑋(+π‘“β€˜πΊ)π‘Œ) ∈ π‘ˆ)
254, 4, 18, 19, 8, 9, 24txcnpi 23332 . 2 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ βˆƒπ‘’ ∈ 𝐽 βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ (𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ)))
26 dfss3 3970 . . . . . . 7 ((𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ βˆ€π‘§ ∈ (𝑒 Γ— 𝑣)𝑧 ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ))
27 eleq1 2821 . . . . . . . . 9 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (𝑧 ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ ⟨π‘₯, π‘¦βŸ© ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ)))
282, 5plusffn 18574 . . . . . . . . . 10 (+π‘“β€˜πΊ) Fn (𝐡 Γ— 𝐡)
29 elpreima 7059 . . . . . . . . . 10 ((+π‘“β€˜πΊ) Fn (𝐡 Γ— 𝐡) β†’ (⟨π‘₯, π‘¦βŸ© ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ)))
3028, 29ax-mp 5 . . . . . . . . 9 (⟨π‘₯, π‘¦βŸ© ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ))
3127, 30bitrdi 286 . . . . . . . 8 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (𝑧 ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ)))
3231ralxp 5841 . . . . . . 7 (βˆ€π‘§ ∈ (𝑒 Γ— 𝑣)𝑧 ∈ (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ))
3326, 32bitri 274 . . . . . 6 ((𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) ↔ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ))
34 opelxp 5712 . . . . . . . . . 10 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ↔ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
35 df-ov 7414 . . . . . . . . . . 11 (π‘₯(+π‘“β€˜πΊ)𝑦) = ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©)
362, 20, 5plusfval 18572 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯(+π‘“β€˜πΊ)𝑦) = (π‘₯ + 𝑦))
3735, 36eqtr3id 2786 . . . . . . . . . 10 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) = (π‘₯ + 𝑦))
3834, 37sylbi 216 . . . . . . . . 9 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) β†’ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) = (π‘₯ + 𝑦))
3938eleq1d 2818 . . . . . . . 8 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) β†’ (((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ ↔ (π‘₯ + 𝑦) ∈ π‘ˆ))
4039biimpa 477 . . . . . . 7 ((⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ) β†’ (π‘₯ + 𝑦) ∈ π‘ˆ)
41402ralimi 3123 . . . . . 6 (βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡) ∧ ((+π‘“β€˜πΊ)β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ π‘ˆ) β†’ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ)
4233, 41sylbi 216 . . . . 5 ((𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ) β†’ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ)
43423anim3i 1154 . . . 4 ((𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ (𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ)) β†’ (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ))
4443reximi 3084 . . 3 (βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ (𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ)) β†’ βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ))
4544reximi 3084 . 2 (βˆƒπ‘’ ∈ 𝐽 βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ (𝑒 Γ— 𝑣) βŠ† (β—‘(+π‘“β€˜πΊ) β€œ π‘ˆ)) β†’ βˆƒπ‘’ ∈ 𝐽 βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ))
4625, 45syl 17 1 (((𝐺 ∈ TopMnd ∧ π‘ˆ ∈ 𝐽) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 + π‘Œ) ∈ π‘ˆ)) β†’ βˆƒπ‘’ ∈ 𝐽 βˆƒπ‘£ ∈ 𝐽 (𝑋 ∈ 𝑒 ∧ π‘Œ ∈ 𝑣 ∧ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑣 (π‘₯ + 𝑦) ∈ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948  βŸ¨cop 4634  βˆͺ cuni 4908   Γ— cxp 5674  β—‘ccnv 5675   β€œ cima 5679   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  TopOpenctopn 17371  +𝑓cplusf 18562  TopOnctopon 22632   Cn ccn 22948   CnP ccnp 22949   Γ—t ctx 23284  TopMndctmd 23794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-topgen 17393  df-plusf 18564  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cn 22951  df-cnp 22952  df-tx 23286  df-tmd 23796
This theorem is referenced by:  tsmsxp  23879
  Copyright terms: Public domain W3C validator