MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Structured version   Visualization version   GIF version

Theorem tmdcn2 23983
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1 𝐵 = (Base‘𝐺)
tmdcn2.2 𝐽 = (TopOpen‘𝐺)
tmdcn2.3 + = (+g𝐺)
Assertion
Ref Expression
tmdcn2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐺   𝑢,𝐽,𝑣   𝑢,𝑈,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢)   + (𝑥,𝑦,𝑣,𝑢)   𝐽(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem tmdcn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5 𝐽 = (TopOpen‘𝐺)
2 tmdcn2.1 . . . . 5 𝐵 = (Base‘𝐺)
31, 2tmdtopon 23975 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
43ad2antrr 726 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝐽 ∈ (TopOn‘𝐵))
5 eqid 2730 . . . . . 6 (+𝑓𝐺) = (+𝑓𝐺)
61, 5tmdcn 23977 . . . . 5 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
76ad2antrr 726 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
8 simpr1 1195 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑋𝐵)
9 simpr2 1196 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑌𝐵)
108, 9opelxpd 5680 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 txtopon 23485 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
124, 4, 11syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
13 toponuni 22808 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1412, 13syl 17 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1510, 14eleqtrd 2831 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽))
16 eqid 2730 . . . . 5 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
1716cncnpi 23172 . . . 4 (((+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
187, 15, 17syl2anc 584 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
19 simplr 768 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑈𝐽)
20 tmdcn2.3 . . . . . 6 + = (+g𝐺)
212, 20, 5plusfval 18581 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
228, 9, 21syl2anc 584 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
23 simpr3 1197 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
2422, 23eqeltrd 2829 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) ∈ 𝑈)
254, 4, 18, 19, 8, 9, 24txcnpi 23502 . 2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)))
26 dfss3 3938 . . . . . . 7 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈))
27 eleq1 2817 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈)))
282, 5plusffn 18583 . . . . . . . . . 10 (+𝑓𝐺) Fn (𝐵 × 𝐵)
29 elpreima 7033 . . . . . . . . . 10 ((+𝑓𝐺) Fn (𝐵 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3028, 29ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3127, 30bitrdi 287 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3231ralxp 5808 . . . . . . 7 (∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3326, 32bitri 275 . . . . . 6 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
34 opelxp 5677 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
35 df-ov 7393 . . . . . . . . . . 11 (𝑥(+𝑓𝐺)𝑦) = ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩)
362, 20, 5plusfval 18581 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (𝑥(+𝑓𝐺)𝑦) = (𝑥 + 𝑦))
3735, 36eqtr3id 2779 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3834, 37sylbi 217 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3938eleq1d 2814 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → (((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈 ↔ (𝑥 + 𝑦) ∈ 𝑈))
4039biimpa 476 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → (𝑥 + 𝑦) ∈ 𝑈)
41402ralimi 3104 . . . . . 6 (∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
4233, 41sylbi 217 . . . . 5 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
43423anim3i 1154 . . . 4 ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4443reximi 3068 . . 3 (∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4544reximi 3068 . 2 (∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4625, 45syl 17 1 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  cop 4598   cuni 4874   × cxp 5639  ccnv 5640  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  TopOpenctopn 17391  +𝑓cplusf 18571  TopOnctopon 22804   Cn ccn 23118   CnP ccnp 23119   ×t ctx 23454  TopMndctmd 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-topgen 17413  df-plusf 18573  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-tmd 23966
This theorem is referenced by:  tsmsxp  24049
  Copyright terms: Public domain W3C validator