MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Structured version   Visualization version   GIF version

Theorem tmdcn2 23148
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1 𝐵 = (Base‘𝐺)
tmdcn2.2 𝐽 = (TopOpen‘𝐺)
tmdcn2.3 + = (+g𝐺)
Assertion
Ref Expression
tmdcn2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐺   𝑢,𝐽,𝑣   𝑢,𝑈,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢)   + (𝑥,𝑦,𝑣,𝑢)   𝐽(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem tmdcn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5 𝐽 = (TopOpen‘𝐺)
2 tmdcn2.1 . . . . 5 𝐵 = (Base‘𝐺)
31, 2tmdtopon 23140 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
43ad2antrr 722 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝐽 ∈ (TopOn‘𝐵))
5 eqid 2738 . . . . . 6 (+𝑓𝐺) = (+𝑓𝐺)
61, 5tmdcn 23142 . . . . 5 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
76ad2antrr 722 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
8 simpr1 1192 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑋𝐵)
9 simpr2 1193 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑌𝐵)
108, 9opelxpd 5618 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 txtopon 22650 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
124, 4, 11syl2anc 583 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)))
13 toponuni 21971 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1412, 13syl 17 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝐵 × 𝐵) = (𝐽 ×t 𝐽))
1510, 14eleqtrd 2841 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽))
16 eqid 2738 . . . . 5 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
1716cncnpi 22337 . . . 4 (((+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐽 ×t 𝐽)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
187, 15, 17syl2anc 583 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (+𝑓𝐺) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝑋, 𝑌⟩))
19 simplr 765 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → 𝑈𝐽)
20 tmdcn2.3 . . . . . 6 + = (+g𝐺)
212, 20, 5plusfval 18248 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
228, 9, 21syl2anc 583 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
23 simpr3 1194 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
2422, 23eqeltrd 2839 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → (𝑋(+𝑓𝐺)𝑌) ∈ 𝑈)
254, 4, 18, 19, 8, 9, 24txcnpi 22667 . 2 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)))
26 dfss3 3905 . . . . . . 7 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈))
27 eleq1 2826 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈)))
282, 5plusffn 18250 . . . . . . . . . 10 (+𝑓𝐺) Fn (𝐵 × 𝐵)
29 elpreima 6917 . . . . . . . . . 10 ((+𝑓𝐺) Fn (𝐵 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3028, 29ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3127, 30bitrdi 286 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈)))
3231ralxp 5739 . . . . . . 7 (∀𝑧 ∈ (𝑢 × 𝑣)𝑧 ∈ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
3326, 32bitri 274 . . . . . 6 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) ↔ ∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈))
34 opelxp 5616 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
35 df-ov 7258 . . . . . . . . . . 11 (𝑥(+𝑓𝐺)𝑦) = ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩)
362, 20, 5plusfval 18248 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (𝑥(+𝑓𝐺)𝑦) = (𝑥 + 𝑦))
3735, 36eqtr3id 2793 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3834, 37sylbi 216 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦))
3938eleq1d 2823 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → (((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈 ↔ (𝑥 + 𝑦) ∈ 𝑈))
4039biimpa 476 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → (𝑥 + 𝑦) ∈ 𝑈)
41402ralimi 3087 . . . . . 6 (∀𝑥𝑢𝑦𝑣 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ∧ ((+𝑓𝐺)‘⟨𝑥, 𝑦⟩) ∈ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
4233, 41sylbi 216 . . . . 5 ((𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈) → ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈)
43423anim3i 1152 . . . 4 ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4443reximi 3174 . . 3 (∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4544reximi 3174 . 2 (∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ ((+𝑓𝐺) “ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
4625, 45syl 17 1 (((𝐺 ∈ TopMnd ∧ 𝑈𝐽) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢𝐽𝑣𝐽 (𝑋𝑢𝑌𝑣 ∧ ∀𝑥𝑢𝑦𝑣 (𝑥 + 𝑦) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cop 4564   cuni 4836   × cxp 5578  ccnv 5579  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  TopOpenctopn 17049  +𝑓cplusf 18238  TopOnctopon 21967   Cn ccn 22283   CnP ccnp 22284   ×t ctx 22619  TopMndctmd 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-plusf 18240  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-tmd 23131
This theorem is referenced by:  tsmsxp  23214
  Copyright terms: Public domain W3C validator