|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axcont | Structured version Visualization version GIF version | ||
| Description: The axiom of continuity. Take two sets of points 𝐴 and 𝐵. If all the points in 𝐴 come before the points of 𝐵 on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| axcont | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉) | |
| 2 | 1 | 3anim3i 1154 | . . . . . . . 8 ⊢ ((𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) | 
| 3 | 2 | anim2i 617 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉))) | 
| 4 | simpr3l 1234 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉))) → 𝑎 ∈ (𝔼‘𝑁)) | |
| 5 | axcontlem12 28991 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | 
| 7 | 6 | 3exp2 1354 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝐴 ⊆ (𝔼‘𝑁) → (𝐵 ⊆ (𝔼‘𝑁) → ((𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉)))) | 
| 8 | 7 | com4r 94 | . . . 4 ⊢ ((𝑎 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉) → (𝑁 ∈ ℕ → (𝐴 ⊆ (𝔼‘𝑁) → (𝐵 ⊆ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉)))) | 
| 9 | 8 | rexlimiva 3146 | . . 3 ⊢ (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉 → (𝑁 ∈ ℕ → (𝐴 ⊆ (𝔼‘𝑁) → (𝐵 ⊆ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉)))) | 
| 10 | 9 | com4l 92 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ⊆ (𝔼‘𝑁) → (𝐵 ⊆ (𝔼‘𝑁) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉 → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉)))) | 
| 11 | 10 | 3imp2 1349 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 〈cop 4631 class class class wbr 5142 ‘cfv 6560 ℕcn 12267 𝔼cee 28904 Btwn cbtwn 28905 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-z 12616 df-uz 12880 df-ico 13394 df-icc 13395 df-fz 13549 df-ee 28907 df-btwn 28908 | 
| This theorem is referenced by: eengtrkg 29002 | 
| Copyright terms: Public domain | W3C validator |