Proof of Theorem btwnconn1lem6
| Step | Hyp | Ref
| Expression |
| 1 | | simprrl 780 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 𝐸 Btwn 〈𝐶, 𝑐〉) |
| 2 | 1, 1 | jca 511 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐶, 𝑐〉)) |
| 3 | | simp11 1204 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
| 4 | | simp21 1207 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
| 5 | | simp23 1209 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑐 ∈ (𝔼‘𝑁)) |
| 6 | 3, 4, 5 | cgrrflxd 36011 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉) |
| 7 | | simp33 1212 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁)) |
| 8 | 3, 7, 5 | cgrrflxd 36011 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉) |
| 9 | 6, 8 | jca 511 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉)) |
| 10 | 9 | adantr 480 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉)) |
| 11 | | simp31 1210 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁)) |
| 12 | | simp22 1208 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
| 13 | | simp2rr 1244 |
. . . . 5
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉) |
| 14 | 13 | ad2antrl 728 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉) |
| 15 | 3, 4, 11, 4, 12, 14 | cgrcomand 36014 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉) |
| 16 | | simp2lr 1242 |
. . . . . . 7
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) |
| 17 | 16 | ad2antrl 728 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) |
| 18 | 3, 12, 5, 4, 12, 17 | cgrcomrand 36023 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 𝑐〉Cgr〈𝐷, 𝐶〉) |
| 19 | | 3simpa 1148 |
. . . . . . 7
⊢ ((𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) |
| 20 | 19 | 3anim3i 1154 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) |
| 21 | | simpl 482 |
. . . . . 6
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉)) → (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) |
| 22 | | btwnconn1lem4 36113 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) |
| 23 | 20, 21, 22 | syl2an 596 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) |
| 24 | 3, 12, 5, 11, 5, 12, 4, 18, 23 | cgrtr3and 36018 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 𝑐〉Cgr〈𝑑, 𝑐〉) |
| 25 | 3, 12, 5, 11, 5, 24 | cgrcomlrand 36024 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉) |
| 26 | 15, 25 | jca 511 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉 ∧ 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉)) |
| 27 | | brifs 36066 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (〈〈𝐶, 𝐸〉, 〈𝑐, 𝐷〉〉 InnerFiveSeg 〈〈𝐶, 𝐸〉, 〈𝑐, 𝑑〉〉 ↔ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐶, 𝑐〉) ∧ (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉) ∧ (〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉 ∧ 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉)))) |
| 28 | | ifscgr 36067 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (〈〈𝐶, 𝐸〉, 〈𝑐, 𝐷〉〉 InnerFiveSeg 〈〈𝐶, 𝐸〉, 〈𝑐, 𝑑〉〉 → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉)) |
| 29 | 27, 28 | sylbird 260 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐶, 𝑐〉) ∧ (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉) ∧ (〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉 ∧ 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉)) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉)) |
| 30 | 3, 4, 7, 5, 12, 4,
7, 5, 11, 29 | syl333anc 1404 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐶, 𝑐〉) ∧ (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉) ∧ (〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉 ∧ 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉)) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉)) |
| 31 | 30 | adantr 480 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐶, 𝑐〉) ∧ (〈𝐶, 𝑐〉Cgr〈𝐶, 𝑐〉 ∧ 〈𝐸, 𝑐〉Cgr〈𝐸, 𝑐〉) ∧ (〈𝐶, 𝐷〉Cgr〈𝐶, 𝑑〉 ∧ 〈𝑐, 𝐷〉Cgr〈𝑐, 𝑑〉)) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉)) |
| 32 | 2, 10, 26, 31 | mp3and 1466 |
1
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉) |