Proof of Theorem btwnconn1lem5
Step | Hyp | Ref
| Expression |
1 | | simprrr 778 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 𝐸 Btwn 〈𝐷, 𝑑〉) |
2 | | simp11 1201 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
3 | | simp22 1205 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
4 | | simp33 1209 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁)) |
5 | | simp31 1207 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁)) |
6 | | cgr3rflx 34283 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉) |
7 | 2, 3, 4, 5, 6 | syl13anc 1370 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉) |
8 | 7 | adantr 480 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉) |
9 | | simp2lr 1239 |
. . . . 5
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) |
10 | 9 | ad2antrl 724 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) |
11 | | simp23 1206 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑐 ∈ (𝔼‘𝑁)) |
12 | | simp21 1204 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
13 | | cgrcomr 34226 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐷, 𝑐〉Cgr〈𝐷, 𝐶〉)) |
14 | 2, 3, 11, 12, 3, 13 | syl122anc 1377 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐷, 𝑐〉Cgr〈𝐷, 𝐶〉)) |
15 | | cgrcom 34219 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐷, 𝑐〉Cgr〈𝐷, 𝐶〉 ↔ 〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉)) |
16 | 2, 3, 11, 3, 12, 15 | syl122anc 1377 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐷, 𝑐〉Cgr〈𝐷, 𝐶〉 ↔ 〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉)) |
17 | 14, 16 | bitrd 278 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉)) |
18 | 17 | adantr 480 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉)) |
19 | 10, 18 | mpbid 231 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉) |
20 | | simp2rr 1241 |
. . . . . 6
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) → 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉) |
21 | 20 | ad2antrl 724 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉) |
22 | 2, 12, 5, 12, 3, 21 | cgrcomlrand 34230 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝑑, 𝐶〉Cgr〈𝐷, 𝐶〉) |
23 | | 3simpa 1146 |
. . . . . 6
⊢ ((𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) |
24 | 23 | 3anim3i 1152 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) |
25 | | simpl 482 |
. . . . 5
⊢
(((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉)) → (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) |
26 | | btwnconn1lem4 34319 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) |
27 | 24, 25, 26 | syl2an 595 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) |
28 | 2, 5, 12, 5, 11, 3, 12, 22, 27 | cgrtr3and 34224 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉) |
29 | 19, 28 | jca 511 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → (〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉 ∧ 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉)) |
30 | | brifs2 34307 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (〈〈𝐷, 𝐸〉, 〈𝑑, 𝐶〉〉 InnerFiveSeg 〈〈𝐷, 𝐸〉, 〈𝑑, 𝑐〉〉 ↔ (𝐸 Btwn 〈𝐷, 𝑑〉 ∧ 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉 ∧ (〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉 ∧ 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉)))) |
31 | | ifscgr 34273 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (〈〈𝐷, 𝐸〉, 〈𝑑, 𝐶〉〉 InnerFiveSeg 〈〈𝐷, 𝐸〉, 〈𝑑, 𝑐〉〉 → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉)) |
32 | 30, 31 | sylbird 259 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → ((𝐸 Btwn 〈𝐷, 𝑑〉 ∧ 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉 ∧ (〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉 ∧ 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉)) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉)) |
33 | 2, 3, 4, 5, 12, 3,
4, 5, 11, 32 | syl333anc 1400 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐸 Btwn 〈𝐷, 𝑑〉 ∧ 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉 ∧ (〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉 ∧ 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉)) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉)) |
34 | 33 | adantr 480 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → ((𝐸 Btwn 〈𝐷, 𝑑〉 ∧ 〈𝐷, 〈𝐸, 𝑑〉〉Cgr3〈𝐷, 〈𝐸, 𝑑〉〉 ∧ (〈𝐷, 𝐶〉Cgr〈𝐷, 𝑐〉 ∧ 〈𝑑, 𝐶〉Cgr〈𝑑, 𝑐〉)) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉)) |
35 | 1, 8, 29, 34 | mp3and 1462 |
1
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉) |