![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvso | Structured version Visualization version GIF version |
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
Ref | Expression |
---|---|
cnvso | ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvpo 6283 | . . 3 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
2 | ralcom 3286 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
3 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 5880 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
6 | equcom 2021 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
7 | 4, 3 | brcnv 5880 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | 5, 6, 7 | 3orbi123i 1156 | . . . . 5 ⊢ ((𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
9 | 8 | 2ralbii 3128 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
10 | 2, 9 | bitr4i 277 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦)) |
11 | 1, 10 | anbi12i 627 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) |
12 | df-so 5588 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
13 | df-so 5588 | . 2 ⊢ (◡𝑅 Or 𝐴 ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) | |
14 | 11, 12, 13 | 3bitr4i 302 | 1 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ w3o 1086 ∀wral 3061 class class class wbr 5147 Po wpo 5585 Or wor 5586 ◡ccnv 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-po 5587 df-so 5588 df-cnv 5683 |
This theorem is referenced by: infexd 9474 eqinf 9475 infval 9477 infcl 9479 inflb 9480 infglb 9481 infglbb 9482 fiinfcl 9492 infltoreq 9493 infempty 9498 infiso 9499 wofib 9536 oemapso 9673 cflim2 10254 fin23lem40 10342 gtso 11291 nomaxmo 27190 tosglb 32132 xrsclat 32168 xrge0iifiso 32903 socnv 34722 welb 36592 xrgtso 44041 |
Copyright terms: Public domain | W3C validator |