| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvso | Structured version Visualization version GIF version | ||
| Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
| Ref | Expression |
|---|---|
| cnvso | ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvpo 6307 | . . 3 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
| 2 | ralcom 3289 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
| 3 | vex 3484 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | vex 3484 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 5893 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 6 | equcom 2017 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 7 | 4, 3 | brcnv 5893 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 8 | 5, 6, 7 | 3orbi123i 1157 | . . . . 5 ⊢ ((𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 9 | 8 | 2ralbii 3128 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 10 | 2, 9 | bitr4i 278 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦)) |
| 11 | 1, 10 | anbi12i 628 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) |
| 12 | df-so 5593 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 13 | df-so 5593 | . 2 ⊢ (◡𝑅 Or 𝐴 ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1086 ∀wral 3061 class class class wbr 5143 Po wpo 5590 Or wor 5591 ◡ccnv 5684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-po 5592 df-so 5593 df-cnv 5693 |
| This theorem is referenced by: infexd 9523 eqinf 9524 infval 9526 infcl 9528 inflb 9529 infglb 9530 infglbb 9531 fiinfcl 9541 infltoreq 9542 infempty 9547 infiso 9548 wofib 9585 oemapso 9722 cflim2 10303 fin23lem40 10391 gtso 11342 nomaxmo 27743 tosglb 32965 xrsclat 33013 xrge0iifiso 33934 socnv 35764 welb 37743 xrgtso 45356 |
| Copyright terms: Public domain | W3C validator |