| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvso | Structured version Visualization version GIF version | ||
| Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
| Ref | Expression |
|---|---|
| cnvso | ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvpo 6263 | . . 3 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
| 2 | ralcom 3266 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
| 3 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 5849 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 6 | equcom 2018 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 7 | 4, 3 | brcnv 5849 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 8 | 5, 6, 7 | 3orbi123i 1156 | . . . . 5 ⊢ ((𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 9 | 8 | 2ralbii 3109 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 10 | 2, 9 | bitr4i 278 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦)) |
| 11 | 1, 10 | anbi12i 628 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) |
| 12 | df-so 5550 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 13 | df-so 5550 | . 2 ⊢ (◡𝑅 Or 𝐴 ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∀wral 3045 class class class wbr 5110 Po wpo 5547 Or wor 5548 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-po 5549 df-so 5550 df-cnv 5649 |
| This theorem is referenced by: infexd 9442 eqinf 9443 infval 9445 infcl 9447 inflb 9448 infglb 9449 infglbb 9450 fiinfcl 9461 infltoreq 9462 infempty 9467 infiso 9468 wofib 9505 oemapso 9642 cflim2 10223 fin23lem40 10311 gtso 11262 nomaxmo 27617 tosglb 32908 xrsclat 32956 xrge0iifiso 33932 socnv 35758 welb 37737 xrgtso 45348 |
| Copyright terms: Public domain | W3C validator |