Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvso | Structured version Visualization version GIF version |
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
Ref | Expression |
---|---|
cnvso | ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvpo 6179 | . . 3 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
2 | ralcom 3280 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
3 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 5780 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
6 | equcom 2022 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
7 | 4, 3 | brcnv 5780 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | 5, 6, 7 | 3orbi123i 1154 | . . . . 5 ⊢ ((𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
9 | 8 | 2ralbii 3091 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
10 | 2, 9 | bitr4i 277 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦)) |
11 | 1, 10 | anbi12i 626 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) |
12 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
13 | df-so 5495 | . 2 ⊢ (◡𝑅 Or 𝐴 ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦◡𝑅𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥◡𝑅𝑦))) | |
14 | 11, 12, 13 | 3bitr4i 302 | 1 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ w3o 1084 ∀wral 3063 class class class wbr 5070 Po wpo 5492 Or wor 5493 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-cnv 5588 |
This theorem is referenced by: infexd 9172 eqinf 9173 infval 9175 infcl 9177 inflb 9178 infglb 9179 infglbb 9180 fiinfcl 9190 infltoreq 9191 infempty 9196 infiso 9197 wofib 9234 oemapso 9370 cflim2 9950 fin23lem40 10038 gtso 10987 tosglb 31155 xrsclat 31191 xrge0iifiso 31787 socnv 33637 nomaxmo 33828 welb 35821 xrgtso 42774 |
Copyright terms: Public domain | W3C validator |