MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvso Structured version   Visualization version   GIF version

Theorem cnvso 6261
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvso (𝑅 Or 𝐴𝑅 Or 𝐴)

Proof of Theorem cnvso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpo 6260 . . 3 (𝑅 Po 𝐴𝑅 Po 𝐴)
2 ralcom 3265 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
3 vex 3451 . . . . . . 7 𝑦 ∈ V
4 vex 3451 . . . . . . 7 𝑥 ∈ V
53, 4brcnv 5846 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
6 equcom 2018 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
74, 3brcnv 5846 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 6, 73orbi123i 1156 . . . . 5 ((𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
982ralbii 3108 . . . 4 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
102, 9bitr4i 278 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦))
111, 10anbi12i 628 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
12 df-so 5547 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
13 df-so 5547 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
1411, 12, 133bitr4i 303 1 (𝑅 Or 𝐴𝑅 Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1085  wral 3044   class class class wbr 5107   Po wpo 5544   Or wor 5545  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-cnv 5646
This theorem is referenced by:  infexd  9435  eqinf  9436  infval  9438  infcl  9440  inflb  9441  infglb  9442  infglbb  9443  fiinfcl  9454  infltoreq  9455  infempty  9460  infiso  9461  wofib  9498  oemapso  9635  cflim2  10216  fin23lem40  10304  gtso  11255  nomaxmo  27610  tosglb  32901  xrsclat  32949  xrge0iifiso  33925  socnv  35751  welb  37730  xrgtso  45341
  Copyright terms: Public domain W3C validator