![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtp | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
brtp.1 | ⊢ 𝑋 ∈ V |
brtp.2 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
brtp | ⊢ (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}) | |
2 | opex 5464 | . . 3 ⊢ ⟨𝑋, 𝑌⟩ ∈ V | |
3 | 2 | eltp 4692 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩)) |
4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
6 | 4, 5 | opth 5476 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
7 | 4, 5 | opth 5476 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
8 | 4, 5 | opth 5476 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
9 | 6, 7, 8 | 3orbi123i 1156 | . 2 ⊢ ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
10 | 1, 3, 9 | 3bitri 296 | 1 ⊢ (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {ctp 4632 ⟨cop 4634 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-br 5149 |
This theorem is referenced by: sltval2 27166 sltintdifex 27171 sltres 27172 noextendlt 27179 noextendgt 27180 nolesgn2o 27181 nogesgn1o 27183 sltsolem1 27185 nosepnelem 27189 nosep1o 27191 nosep2o 27192 nosepdmlem 27193 nodenselem8 27201 nodense 27202 nolt02o 27205 nogt01o 27206 nosupbnd2lem1 27225 noinfbnd2lem1 27240 |
Copyright terms: Public domain | W3C validator |