Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Structured version   Visualization version   GIF version

Theorem brtp 32989
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1 𝑋 ∈ V
brtp.2 𝑌 ∈ V
Assertion
Ref Expression
brtp (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))

Proof of Theorem brtp
StepHypRef Expression
1 df-br 5070 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
2 opex 5359 . . 3 𝑋, 𝑌⟩ ∈ V
32eltp 4629 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩))
4 brtp.1 . . . 4 𝑋 ∈ V
5 brtp.2 . . . 4 𝑌 ∈ V
64, 5opth 5371 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵))
74, 5opth 5371 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶𝑌 = 𝐷))
84, 5opth 5371 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸𝑌 = 𝐹))
96, 7, 83orbi123i 1152 . 2 ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
101, 3, 93bitri 299 1 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3o 1082   = wceq 1536  wcel 2113  Vcvv 3497  {ctp 4574  cop 4576   class class class wbr 5069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-br 5070
This theorem is referenced by:  sltval2  33167  sltintdifex  33172  sltres  33173  noextendlt  33180  noextendgt  33181  nolesgn2o  33182  sltsolem1  33184  nosepnelem  33188  nosep1o  33190  nosepdmlem  33191  nodenselem8  33199  nodense  33200  nolt02o  33203  nosupbnd2lem1  33219
  Copyright terms: Public domain W3C validator