Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Structured version   Visualization version   GIF version

Theorem brtp 33098
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1 𝑋 ∈ V
brtp.2 𝑌 ∈ V
Assertion
Ref Expression
brtp (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))

Proof of Theorem brtp
StepHypRef Expression
1 df-br 5031 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
2 opex 5321 . . 3 𝑋, 𝑌⟩ ∈ V
32eltp 4586 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩))
4 brtp.1 . . . 4 𝑋 ∈ V
5 brtp.2 . . . 4 𝑌 ∈ V
64, 5opth 5333 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵))
74, 5opth 5333 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶𝑌 = 𝐷))
84, 5opth 5333 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸𝑌 = 𝐹))
96, 7, 83orbi123i 1153 . 2 ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
101, 3, 93bitri 300 1 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3o 1083   = wceq 1538  wcel 2111  Vcvv 3441  {ctp 4529  cop 4531   class class class wbr 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-br 5031
This theorem is referenced by:  sltval2  33276  sltintdifex  33281  sltres  33282  noextendlt  33289  noextendgt  33290  nolesgn2o  33291  sltsolem1  33293  nosepnelem  33297  nosep1o  33299  nosepdmlem  33300  nodenselem8  33308  nodense  33309  nolt02o  33312  nosupbnd2lem1  33328
  Copyright terms: Public domain W3C validator