| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brtp | Structured version Visualization version GIF version | ||
| Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| brtp.1 | ⊢ 𝑋 ∈ V |
| brtp.2 | ⊢ 𝑌 ∈ V |
| Ref | Expression |
|---|---|
| brtp | ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | |
| 2 | opex 5424 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
| 3 | 2 | eltp 4653 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} ↔ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉)) |
| 4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
| 5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
| 6 | 4, 5 | opth 5436 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
| 7 | 4, 5 | opth 5436 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
| 8 | 4, 5 | opth 5436 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉 ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
| 9 | 6, 7, 8 | 3orbi123i 1156 | . 2 ⊢ ((〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
| 10 | 1, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {ctp 4593 〈cop 4595 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-br 5108 |
| This theorem is referenced by: sltval2 27568 sltintdifex 27573 sltres 27574 noextendlt 27581 noextendgt 27582 nolesgn2o 27583 nogesgn1o 27585 sltsolem1 27587 nosepnelem 27591 nosep1o 27593 nosep2o 27594 nosepdmlem 27595 nodenselem8 27603 nodense 27604 nolt02o 27607 nogt01o 27608 nosupbnd2lem1 27627 noinfbnd2lem1 27642 |
| Copyright terms: Public domain | W3C validator |