![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtp | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
brtp.1 | ⊢ 𝑋 ∈ V |
brtp.2 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
brtp | ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | |
2 | opex 5466 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
3 | 2 | eltp 4694 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} ↔ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉)) |
4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
6 | 4, 5 | opth 5478 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
7 | 4, 5 | opth 5478 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
8 | 4, 5 | opth 5478 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉 ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
9 | 6, 7, 8 | 3orbi123i 1153 | . 2 ⊢ ((〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
10 | 1, 3, 9 | 3bitri 296 | 1 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 Vcvv 3461 {ctp 4634 〈cop 4636 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-br 5150 |
This theorem is referenced by: sltval2 27635 sltintdifex 27640 sltres 27641 noextendlt 27648 noextendgt 27649 nolesgn2o 27650 nogesgn1o 27652 sltsolem1 27654 nosepnelem 27658 nosep1o 27660 nosep2o 27661 nosepdmlem 27662 nodenselem8 27670 nodense 27671 nolt02o 27674 nogt01o 27675 nosupbnd2lem1 27694 noinfbnd2lem1 27709 |
Copyright terms: Public domain | W3C validator |