MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtp Structured version   Visualization version   GIF version

Theorem brtp 5542
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1 𝑋 ∈ V
brtp.2 𝑌 ∈ V
Assertion
Ref Expression
brtp (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))

Proof of Theorem brtp
StepHypRef Expression
1 df-br 5167 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
2 opex 5484 . . 3 𝑋, 𝑌⟩ ∈ V
32eltp 4712 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩))
4 brtp.1 . . . 4 𝑋 ∈ V
5 brtp.2 . . . 4 𝑌 ∈ V
64, 5opth 5496 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵))
74, 5opth 5496 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶𝑌 = 𝐷))
84, 5opth 5496 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸𝑌 = 𝐹))
96, 7, 83orbi123i 1156 . 2 ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
101, 3, 93bitri 297 1 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  Vcvv 3488  {ctp 4652  cop 4654   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-br 5167
This theorem is referenced by:  sltval2  27719  sltintdifex  27724  sltres  27725  noextendlt  27732  noextendgt  27733  nolesgn2o  27734  nogesgn1o  27736  sltsolem1  27738  nosepnelem  27742  nosep1o  27744  nosep2o  27745  nosepdmlem  27746  nodenselem8  27754  nodense  27755  nolt02o  27758  nogt01o  27759  nosupbnd2lem1  27778  noinfbnd2lem1  27793
  Copyright terms: Public domain W3C validator