![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtp | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
brtp.1 | ⊢ 𝑋 ∈ V |
brtp.2 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
brtp | ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | |
2 | opex 5475 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
3 | 2 | eltp 4694 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} ↔ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉)) |
4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
6 | 4, 5 | opth 5487 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
7 | 4, 5 | opth 5487 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
8 | 4, 5 | opth 5487 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉 ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
9 | 6, 7, 8 | 3orbi123i 1155 | . 2 ⊢ ((〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
10 | 1, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {ctp 4635 〈cop 4637 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-br 5149 |
This theorem is referenced by: sltval2 27716 sltintdifex 27721 sltres 27722 noextendlt 27729 noextendgt 27730 nolesgn2o 27731 nogesgn1o 27733 sltsolem1 27735 nosepnelem 27739 nosep1o 27741 nosep2o 27742 nosepdmlem 27743 nodenselem8 27751 nodense 27752 nolt02o 27755 nogt01o 27756 nosupbnd2lem1 27775 noinfbnd2lem1 27790 |
Copyright terms: Public domain | W3C validator |