Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtp | Structured version Visualization version GIF version |
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
brtp.1 | ⊢ 𝑋 ∈ V |
brtp.2 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
brtp | ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | |
2 | opex 5373 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
3 | 2 | eltp 4621 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} ↔ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉)) |
4 | brtp.1 | . . . 4 ⊢ 𝑋 ∈ V | |
5 | brtp.2 | . . . 4 ⊢ 𝑌 ∈ V | |
6 | 4, 5 | opth 5385 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵)) |
7 | 4, 5 | opth 5385 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)) |
8 | 4, 5 | opth 5385 | . . 3 ⊢ (〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉 ↔ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹)) |
9 | 6, 7, 8 | 3orbi123i 1154 | . 2 ⊢ ((〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐶, 𝐷〉 ∨ 〈𝑋, 𝑌〉 = 〈𝐸, 𝐹〉) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
10 | 1, 3, 9 | 3bitri 296 | 1 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {ctp 4562 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-br 5071 |
This theorem is referenced by: sltval2 33786 sltintdifex 33791 sltres 33792 noextendlt 33799 noextendgt 33800 nolesgn2o 33801 nogesgn1o 33803 sltsolem1 33805 nosepnelem 33809 nosep1o 33811 nosep2o 33812 nosepdmlem 33813 nodenselem8 33821 nodense 33822 nolt02o 33825 nogt01o 33826 nosupbnd2lem1 33845 noinfbnd2lem1 33860 |
Copyright terms: Public domain | W3C validator |