MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtp Structured version   Visualization version   GIF version

Theorem brtp 5483
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1 𝑋 ∈ V
brtp.2 𝑌 ∈ V
Assertion
Ref Expression
brtp (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))

Proof of Theorem brtp
StepHypRef Expression
1 df-br 5108 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
2 opex 5424 . . 3 𝑋, 𝑌⟩ ∈ V
32eltp 4653 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩))
4 brtp.1 . . . 4 𝑋 ∈ V
5 brtp.2 . . . 4 𝑌 ∈ V
64, 5opth 5436 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵))
74, 5opth 5436 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶𝑌 = 𝐷))
84, 5opth 5436 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸𝑌 = 𝐹))
96, 7, 83orbi123i 1156 . 2 ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
101, 3, 93bitri 297 1 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3447  {ctp 4593  cop 4595   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-br 5108
This theorem is referenced by:  sltval2  27568  sltintdifex  27573  sltres  27574  noextendlt  27581  noextendgt  27582  nolesgn2o  27583  nogesgn1o  27585  sltsolem1  27587  nosepnelem  27591  nosep1o  27593  nosep2o  27594  nosepdmlem  27595  nodenselem8  27603  nodense  27604  nolt02o  27607  nogt01o  27608  nosupbnd2lem1  27627  noinfbnd2lem1  27642
  Copyright terms: Public domain W3C validator