Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  otthne Structured version   Visualization version   GIF version

Theorem otthne 33682
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypotheses
Ref Expression
otthne.1 𝐴 ∈ V
otthne.2 𝐵 ∈ V
otthne.3 𝐶 ∈ V
Assertion
Ref Expression
otthne (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ≠ ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))

Proof of Theorem otthne
StepHypRef Expression
1 otthne.1 . . . 4 𝐴 ∈ V
2 otthne.2 . . . 4 𝐵 ∈ V
31, 2opthne 5397 . . 3 (⟨𝐴, 𝐵⟩ ≠ ⟨𝐷, 𝐸⟩ ↔ (𝐴𝐷𝐵𝐸))
43orbi1i 911 . 2 ((⟨𝐴, 𝐵⟩ ≠ ⟨𝐷, 𝐸⟩ ∨ 𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∨ 𝐶𝐹))
5 opex 5379 . . 3 𝐴, 𝐵⟩ ∈ V
6 otthne.3 . . 3 𝐶 ∈ V
75, 6opthne 5397 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ≠ ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ ≠ ⟨𝐷, 𝐸⟩ ∨ 𝐶𝐹))
8 df-3or 1087 . 2 ((𝐴𝐷𝐵𝐸𝐶𝐹) ↔ ((𝐴𝐷𝐵𝐸) ∨ 𝐶𝐹))
94, 7, 83bitr4i 303 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ≠ ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  w3o 1085  wcel 2106  wne 2943  Vcvv 3432  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  xpord3lem  33795  xpord3pred  33798  xpord3ind  33800
  Copyright terms: Public domain W3C validator