|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > otthne | Structured version Visualization version GIF version | ||
| Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| otthne.1 | ⊢ 𝐴 ∈ V | 
| otthne.2 | ⊢ 𝐵 ∈ V | 
| otthne.3 | ⊢ 𝐶 ∈ V | 
| Ref | Expression | 
|---|---|
| otthne | ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | otthne.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | otthne.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | otthne.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | otth 5488 | . . . 4 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) | 
| 5 | 4 | notbii 320 | . . 3 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) | 
| 6 | 3ianor 1106 | . . 3 ⊢ (¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | 
| 8 | df-ne 2940 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉) | |
| 9 | df-ne 2940 | . . 3 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
| 10 | df-ne 2940 | . . 3 ⊢ (𝐵 ≠ 𝐸 ↔ ¬ 𝐵 = 𝐸) | |
| 11 | df-ne 2940 | . . 3 ⊢ (𝐶 ≠ 𝐹 ↔ ¬ 𝐶 = 𝐹) | |
| 12 | 9, 10, 11 | 3orbi123i 1156 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | 
| 13 | 7, 8, 12 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 〈cotp 4633 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 | 
| This theorem is referenced by: xpord3lem 8175 xpord3pred 8178 xpord3inddlem 8180 | 
| Copyright terms: Public domain | W3C validator |