MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthne Structured version   Visualization version   GIF version

Theorem otthne 5488
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.)
Hypotheses
Ref Expression
otthne.1 𝐴 ∈ V
otthne.2 𝐵 ∈ V
otthne.3 𝐶 ∈ V
Assertion
Ref Expression
otthne (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))

Proof of Theorem otthne
StepHypRef Expression
1 otthne.1 . . . . 5 𝐴 ∈ V
2 otthne.2 . . . . 5 𝐵 ∈ V
3 otthne.3 . . . . 5 𝐶 ∈ V
41, 2, 3otth 5486 . . . 4 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹))
54notbii 319 . . 3 (¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ ¬ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹))
6 3ianor 1104 . . 3 (¬ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
75, 6bitri 274 . 2 (¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
8 df-ne 2930 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ ¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩)
9 df-ne 2930 . . 3 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
10 df-ne 2930 . . 3 (𝐵𝐸 ↔ ¬ 𝐵 = 𝐸)
11 df-ne 2930 . . 3 (𝐶𝐹 ↔ ¬ 𝐶 = 𝐹)
129, 10, 113orbi123i 1153 . 2 ((𝐴𝐷𝐵𝐸𝐶𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
137, 8, 123bitr4i 302 1 (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  cotp 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639
This theorem is referenced by:  xpord3lem  8154  xpord3pred  8157  xpord3inddlem  8159
  Copyright terms: Public domain W3C validator