MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthne Structured version   Visualization version   GIF version

Theorem otthne 5490
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.)
Hypotheses
Ref Expression
otthne.1 𝐴 ∈ V
otthne.2 𝐵 ∈ V
otthne.3 𝐶 ∈ V
Assertion
Ref Expression
otthne (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))

Proof of Theorem otthne
StepHypRef Expression
1 otthne.1 . . . . 5 𝐴 ∈ V
2 otthne.2 . . . . 5 𝐵 ∈ V
3 otthne.3 . . . . 5 𝐶 ∈ V
41, 2, 3otth 5488 . . . 4 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹))
54notbii 320 . . 3 (¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ ¬ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹))
6 3ianor 1106 . . 3 (¬ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
75, 6bitri 275 . 2 (¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
8 df-ne 2940 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ ¬ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩)
9 df-ne 2940 . . 3 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
10 df-ne 2940 . . 3 (𝐵𝐸 ↔ ¬ 𝐵 = 𝐸)
11 df-ne 2940 . . 3 (𝐶𝐹 ↔ ¬ 𝐶 = 𝐹)
129, 10, 113orbi123i 1156 . 2 ((𝐴𝐷𝐵𝐸𝐶𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹))
137, 8, 123bitr4i 303 1 (⟨𝐴, 𝐵, 𝐶⟩ ≠ ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴𝐷𝐵𝐸𝐶𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  cotp 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634
This theorem is referenced by:  xpord3lem  8175  xpord3pred  8178  xpord3inddlem  8180
  Copyright terms: Public domain W3C validator