Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > otthne | Structured version Visualization version GIF version |
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
otthne.1 | ⊢ 𝐴 ∈ V |
otthne.2 | ⊢ 𝐵 ∈ V |
otthne.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
otthne | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otthne.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | otthne.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opthne 5397 | . . 3 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸)) |
4 | 3 | orbi1i 911 | . 2 ⊢ ((〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ∨ 𝐶 ≠ 𝐹) ↔ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸) ∨ 𝐶 ≠ 𝐹)) |
5 | opex 5379 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
6 | otthne.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 5, 6 | opthne 5397 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ∨ 𝐶 ≠ 𝐹)) |
8 | df-3or 1087 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸) ∨ 𝐶 ≠ 𝐹)) | |
9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1085 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: xpord3lem 33795 xpord3pred 33798 xpord3ind 33800 |
Copyright terms: Public domain | W3C validator |