| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otthne | Structured version Visualization version GIF version | ||
| Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| otthne.1 | ⊢ 𝐴 ∈ V |
| otthne.2 | ⊢ 𝐵 ∈ V |
| otthne.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| otthne | ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otthne.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | otthne.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | otthne.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | otth 5464 | . . . 4 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
| 5 | 4 | notbii 320 | . . 3 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
| 6 | 3ianor 1106 | . . 3 ⊢ (¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
| 8 | df-ne 2934 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉) | |
| 9 | df-ne 2934 | . . 3 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
| 10 | df-ne 2934 | . . 3 ⊢ (𝐵 ≠ 𝐸 ↔ ¬ 𝐵 = 𝐸) | |
| 11 | df-ne 2934 | . . 3 ⊢ (𝐶 ≠ 𝐹 ↔ ¬ 𝐶 = 𝐹) | |
| 12 | 9, 10, 11 | 3orbi123i 1156 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
| 13 | 7, 8, 12 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 〈cotp 4614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 |
| This theorem is referenced by: xpord3lem 8153 xpord3pred 8156 xpord3inddlem 8158 |
| Copyright terms: Public domain | W3C validator |