![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otthne | Structured version Visualization version GIF version |
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otthne.1 | ⊢ 𝐴 ∈ V |
otthne.2 | ⊢ 𝐵 ∈ V |
otthne.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
otthne | ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otthne.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | otthne.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | otthne.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | otth 5504 | . . . 4 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
5 | 4 | notbii 320 | . . 3 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
6 | 3ianor 1107 | . . 3 ⊢ (¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
8 | df-ne 2947 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉) | |
9 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
10 | df-ne 2947 | . . 3 ⊢ (𝐵 ≠ 𝐸 ↔ ¬ 𝐵 = 𝐸) | |
11 | df-ne 2947 | . . 3 ⊢ (𝐶 ≠ 𝐹 ↔ ¬ 𝐶 = 𝐹) | |
12 | 9, 10, 11 | 3orbi123i 1156 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
13 | 7, 8, 12 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ w3o 1086 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 〈cotp 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 |
This theorem is referenced by: xpord3lem 8190 xpord3pred 8193 xpord3inddlem 8195 |
Copyright terms: Public domain | W3C validator |