![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otthne | Structured version Visualization version GIF version |
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otthne.1 | ⊢ 𝐴 ∈ V |
otthne.2 | ⊢ 𝐵 ∈ V |
otthne.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
otthne | ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otthne.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | otthne.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | otthne.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | otth 5486 | . . . 4 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
5 | 4 | notbii 319 | . . 3 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
6 | 3ianor 1104 | . . 3 ⊢ (¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | |
7 | 5, 6 | bitri 274 | . 2 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
8 | df-ne 2930 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉) | |
9 | df-ne 2930 | . . 3 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
10 | df-ne 2930 | . . 3 ⊢ (𝐵 ≠ 𝐸 ↔ ¬ 𝐵 = 𝐸) | |
11 | df-ne 2930 | . . 3 ⊢ (𝐶 ≠ 𝐹 ↔ ¬ 𝐶 = 𝐹) | |
12 | 9, 10, 11 | 3orbi123i 1153 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
13 | 7, 8, 12 | 3bitr4i 302 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ w3o 1083 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 Vcvv 3461 〈cotp 4638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-ot 4639 |
This theorem is referenced by: xpord3lem 8154 xpord3pred 8157 xpord3inddlem 8159 |
Copyright terms: Public domain | W3C validator |