![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otthne | Structured version Visualization version GIF version |
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
Ref | Expression |
---|---|
otthne.1 | ⊢ 𝐴 ∈ V |
otthne.2 | ⊢ 𝐵 ∈ V |
otthne.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
otthne | ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otthne.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | otthne.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | otthne.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | otth 5495 | . . . 4 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
5 | 4 | notbii 320 | . . 3 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹)) |
6 | 3ianor 1106 | . . 3 ⊢ (¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ (¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
8 | df-ne 2939 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ ¬ 〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉) | |
9 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
10 | df-ne 2939 | . . 3 ⊢ (𝐵 ≠ 𝐸 ↔ ¬ 𝐵 = 𝐸) | |
11 | df-ne 2939 | . . 3 ⊢ (𝐶 ≠ 𝐹 ↔ ¬ 𝐶 = 𝐹) | |
12 | 9, 10, 11 | 3orbi123i 1155 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐸 ∨ ¬ 𝐶 = 𝐹)) |
13 | 7, 8, 12 | 3bitr4i 303 | 1 ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 〈cotp 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 |
This theorem is referenced by: xpord3lem 8173 xpord3pred 8176 xpord3inddlem 8178 |
Copyright terms: Public domain | W3C validator |