Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > otthne | Structured version Visualization version GIF version |
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
otthne.1 | ⊢ 𝐴 ∈ V |
otthne.2 | ⊢ 𝐵 ∈ V |
otthne.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
otthne | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otthne.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | otthne.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opthne 5391 | . . 3 ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸)) |
4 | 3 | orbi1i 910 | . 2 ⊢ ((〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ∨ 𝐶 ≠ 𝐹) ↔ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸) ∨ 𝐶 ≠ 𝐹)) |
5 | opex 5373 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
6 | otthne.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 5, 6 | opthne 5391 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 ≠ 〈𝐷, 𝐸〉 ∨ 𝐶 ≠ 𝐹)) |
8 | df-3or 1086 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹) ↔ ((𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸) ∨ 𝐶 ≠ 𝐹)) | |
9 | 4, 7, 8 | 3bitr4i 302 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∨ w3o 1084 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: xpord3lem 33722 xpord3pred 33725 xpord3ind 33727 |
Copyright terms: Public domain | W3C validator |