MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweonALT Structured version   Visualization version   GIF version

Theorem epweonALT 7760
Description: Alternate proof of epweon 7759, shorter but requiring ax-un 7722. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
epweonALT E We On

Proof of Theorem epweonALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6397 . 2 E Fr On
2 eloni 6368 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 6368 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 6390 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5576 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 261 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5576 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1153 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 233 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 595 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2 3191 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7758 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 708 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1083  wcel 2098  wral 3055   class class class wbr 5141   E cep 5572   Fr wfr 5621   We wwe 5623  Ord word 6357  Oncon0 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator