MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweonALT Structured version   Visualization version   GIF version

Theorem epweonALT 7797
Description: Alternate proof of epweon 7796, shorter but requiring ax-un 7756. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
epweonALT E We On

Proof of Theorem epweonALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6422 . 2 E Fr On
2 eloni 6393 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 6393 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 6415 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5586 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 261 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5586 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1156 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 234 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 596 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2 3198 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7795 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 711 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1085  wcel 2107  wral 3060   class class class wbr 5142   E cep 5582   Fr wfr 5633   We wwe 5635  Ord word 6382  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator