| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epweonALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of epweon 7708, shorter but requiring ax-un 7668. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| epweonALT | ⊢ E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr 6345 | . 2 ⊢ E Fr On | |
| 2 | eloni 6316 | . . . 4 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 3 | eloni 6316 | . . . 4 ⊢ (𝑦 ∈ On → Ord 𝑦) | |
| 4 | ordtri3or 6338 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 5 | epel 5519 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 6 | biid 261 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 7 | epel 5519 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 8 | 5, 6, 7 | 3orbi123i 1156 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 9 | 4, 8 | sylibr 234 | . . . 4 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 10 | 2, 3, 9 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 11 | 10 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) |
| 12 | dfwe2 7707 | . 2 ⊢ ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | |
| 13 | 1, 11, 12 | mpbir2an 711 | 1 ⊢ E We On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ w3o 1085 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 E cep 5515 Fr wfr 5566 We wwe 5568 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |