MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweonALT Structured version   Visualization version   GIF version

Theorem epweonALT 7716
Description: Alternate proof of epweon 7715, shorter but requiring ax-un 7675. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
epweonALT E We On

Proof of Theorem epweonALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6350 . 2 E Fr On
2 eloni 6321 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 6321 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 6343 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5526 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 261 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5526 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1156 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 234 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 596 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2 3169 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7714 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 711 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1085  wcel 2109  wral 3044   class class class wbr 5095   E cep 5522   Fr wfr 5573   We wwe 5575  Ord word 6310  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator