![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epweonALT | Structured version Visualization version GIF version |
Description: Alternate proof of epweon 7714, shorter but requiring ax-un 7677. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
epweonALT | ⊢ E We On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfr 6361 | . 2 ⊢ E Fr On | |
2 | eloni 6332 | . . . 4 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
3 | eloni 6332 | . . . 4 ⊢ (𝑦 ∈ On → Ord 𝑦) | |
4 | ordtri3or 6354 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
5 | epel 5545 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
6 | biid 261 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
7 | epel 5545 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
8 | 5, 6, 7 | 3orbi123i 1157 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
9 | 4, 8 | sylibr 233 | . . . 4 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
10 | 2, 3, 9 | syl2an 597 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
11 | 10 | rgen2 3195 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) |
12 | dfwe2 7713 | . 2 ⊢ ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | |
13 | 1, 11, 12 | mpbir2an 710 | 1 ⊢ E We On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ w3o 1087 ∈ wcel 2107 ∀wral 3065 class class class wbr 5110 E cep 5541 Fr wfr 5590 We wwe 5592 Ord word 6321 Oncon0 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-ord 6325 df-on 6326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |