MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem6 Structured version   Visualization version   GIF version

Theorem axlowdimlem6 27315
Description: Lemma for axlowdim 27329. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypotheses
Ref Expression
axlowdimlem6.1 𝐴 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem6.2 𝐵 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem6.3 𝐶 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
Assertion
Ref Expression
axlowdimlem6 (𝑁 ∈ (ℤ‘2) → ¬ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))

Proof of Theorem axlowdimlem6
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12351 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
2 eluzelz 12592 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 2nn 12046 . . . . . . . . . . 11 2 ∈ ℕ
4 uznnssnn 12635 . . . . . . . . . . 11 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ⊆ ℕ
6 nnuz 12621 . . . . . . . . . 10 ℕ = (ℤ‘1)
75, 6sseqtri 3957 . . . . . . . . 9 (ℤ‘2) ⊆ (ℤ‘1)
87sseli 3917 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (ℤ‘1))
9 eluzle 12595 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ≤ 𝑁)
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 ≤ 𝑁)
11 1re 10975 . . . . . . . 8 1 ∈ ℝ
1211leidi 11509 . . . . . . 7 1 ≤ 1
1310, 12jctil 520 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (1 ≤ 1 ∧ 1 ≤ 𝑁))
14 elfz4 13249 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑁)) → 1 ∈ (1...𝑁))
151, 2, 1, 13, 14syl31anc 1372 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ∈ (1...𝑁))
16 eluzel2 12587 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℤ)
17 eluzle 12595 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
18 1le2 12182 . . . . . . 7 1 ≤ 2
1917, 18jctil 520 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
20 elfz4 13249 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 ≤ 2 ∧ 2 ≤ 𝑁)) → 2 ∈ (1...𝑁))
211, 2, 16, 19, 20syl31anc 1372 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
22 ax-1ne0 10940 . . . . . . 7 1 ≠ 0
23 1t1e1 12135 . . . . . . . 8 (1 · 1) = 1
24 0cn 10967 . . . . . . . . 9 0 ∈ ℂ
2524mul01i 11165 . . . . . . . 8 (0 · 0) = 0
2623, 25neeq12i 3010 . . . . . . 7 ((1 · 1) ≠ (0 · 0) ↔ 1 ≠ 0)
2722, 26mpbir 230 . . . . . 6 (1 · 1) ≠ (0 · 0)
28 fveq2 6774 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1))
29 0re 10977 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3011, 29axlowdimlem4 27313 . . . . . . . . . . . . . . 15 {⟨1, 1⟩, ⟨2, 0⟩}:(1...2)⟶ℝ
31 ffn 6600 . . . . . . . . . . . . . . 15 ({⟨1, 1⟩, ⟨2, 0⟩}:(1...2)⟶ℝ → {⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2)
33 axlowdimlem1 27310 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
34 ffn 6600 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
3533, 34ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
36 axlowdimlem2 27311 . . . . . . . . . . . . . . 15 ((1...2) ∩ (3...𝑁)) = ∅
37 1z 12350 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
38 2z 12352 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
3937, 38, 373pm3.2i 1338 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ)
4012, 18pm3.2i 471 . . . . . . . . . . . . . . . 16 (1 ≤ 1 ∧ 1 ≤ 2)
41 elfz4 13249 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 2)) → 1 ∈ (1...2))
4239, 40, 41mp2an 689 . . . . . . . . . . . . . . 15 1 ∈ (1...2)
4336, 42pm3.2i 471 . . . . . . . . . . . . . 14 (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))
44 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 1⟩, ⟨2, 0⟩}‘1))
4532, 35, 43, 44mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 1⟩, ⟨2, 0⟩}‘1)
46 1ne2 12181 . . . . . . . . . . . . . 14 1 ≠ 2
47 1ex 10971 . . . . . . . . . . . . . . 15 1 ∈ V
4847, 47fvpr1 7065 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 0⟩}‘1) = 1)
4946, 48ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 1⟩, ⟨2, 0⟩}‘1) = 1
5045, 49eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = 1
5128, 50eqtrdi 2794 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 1)
52 fveq2 6774 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1))
5329, 29axlowdimlem4 27313 . . . . . . . . . . . . . . 15 {⟨1, 0⟩, ⟨2, 0⟩}:(1...2)⟶ℝ
54 ffn 6600 . . . . . . . . . . . . . . 15 ({⟨1, 0⟩, ⟨2, 0⟩}:(1...2)⟶ℝ → {⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2)
56 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1))
5755, 35, 43, 56mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1)
5829elexi 3451 . . . . . . . . . . . . . . 15 0 ∈ V
5947, 58fvpr1 7065 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
6046, 59ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
6157, 60eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = 0
6252, 61eqtrdi 2794 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 0)
6351, 62oveq12d 7293 . . . . . . . . . 10 (𝑖 = 1 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = (1 − 0))
64 1m0e1 12094 . . . . . . . . . 10 (1 − 0) = 1
6563, 64eqtrdi 2794 . . . . . . . . 9 (𝑖 = 1 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = 1)
6665oveq1d 7290 . . . . . . . 8 (𝑖 = 1 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))))
67 fveq2 6774 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1))
6829, 11axlowdimlem4 27313 . . . . . . . . . . . . . . 15 {⟨1, 0⟩, ⟨2, 1⟩}:(1...2)⟶ℝ
69 ffn 6600 . . . . . . . . . . . . . . 15 ({⟨1, 0⟩, ⟨2, 1⟩}:(1...2)⟶ℝ → {⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2))
7068, 69ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2)
71 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 1⟩}‘1))
7270, 35, 43, 71mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 1⟩}‘1)
7347, 58fvpr1 7065 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 1⟩}‘1) = 0)
7446, 73ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 1⟩}‘1) = 0
7572, 74eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = 0
7667, 75eqtrdi 2794 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 0)
7776, 62oveq12d 7293 . . . . . . . . . 10 (𝑖 = 1 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = (0 − 0))
78 0m0e0 12093 . . . . . . . . . 10 (0 − 0) = 0
7977, 78eqtrdi 2794 . . . . . . . . 9 (𝑖 = 1 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = 0)
8079oveq2d 7291 . . . . . . . 8 (𝑖 = 1 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0))
8166, 80neeq12d 3005 . . . . . . 7 (𝑖 = 1 → ((((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0)))
82 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2))
8337, 38, 383pm3.2i 1338 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ)
84 2re 12047 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
8584leidi 11509 . . . . . . . . . . . . . . . . 17 2 ≤ 2
8618, 85pm3.2i 471 . . . . . . . . . . . . . . . 16 (1 ≤ 2 ∧ 2 ≤ 2)
87 elfz4 13249 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 ≤ 2 ∧ 2 ≤ 2)) → 2 ∈ (1...2))
8883, 86, 87mp2an 689 . . . . . . . . . . . . . . 15 2 ∈ (1...2)
8936, 88pm3.2i 471 . . . . . . . . . . . . . 14 (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))
90 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 1⟩}‘2))
9170, 35, 89, 90mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 1⟩}‘2)
9238elexi 3451 . . . . . . . . . . . . . . 15 2 ∈ V
9392, 47fvpr2 7067 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 1⟩}‘2) = 1)
9446, 93ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 1⟩}‘2) = 1
9591, 94eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = 1
9682, 95eqtrdi 2794 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 1)
97 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2))
98 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2))
9955, 35, 89, 98mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2)
10092, 58fvpr2 7067 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
10146, 100ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0
10299, 101eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = 0
10397, 102eqtrdi 2794 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 0)
10496, 103oveq12d 7293 . . . . . . . . . 10 (𝑗 = 2 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = (1 − 0))
105104, 64eqtrdi 2794 . . . . . . . . 9 (𝑗 = 2 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = 1)
106105oveq2d 7291 . . . . . . . 8 (𝑗 = 2 → (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (1 · 1))
107 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2))
108 fvun1 6859 . . . . . . . . . . . . . 14 (({⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 1⟩, ⟨2, 0⟩}‘2))
10932, 35, 89, 108mp3an 1460 . . . . . . . . . . . . 13 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 1⟩, ⟨2, 0⟩}‘2)
11092, 58fvpr2 7067 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 0⟩}‘2) = 0)
11146, 110ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 1⟩, ⟨2, 0⟩}‘2) = 0
112109, 111eqtri 2766 . . . . . . . . . . . 12 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = 0
113107, 112eqtrdi 2794 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 0)
114113, 103oveq12d 7293 . . . . . . . . . 10 (𝑗 = 2 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = (0 − 0))
115114, 78eqtrdi 2794 . . . . . . . . 9 (𝑗 = 2 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = 0)
116115oveq1d 7290 . . . . . . . 8 (𝑗 = 2 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0) = (0 · 0))
117106, 116neeq12d 3005 . . . . . . 7 (𝑗 = 2 → ((1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0) ↔ (1 · 1) ≠ (0 · 0)))
11881, 117rspc2ev 3572 . . . . . 6 ((1 ∈ (1...𝑁) ∧ 2 ∈ (1...𝑁) ∧ (1 · 1) ≠ (0 · 0)) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
11927, 118mp3an3 1449 . . . . 5 ((1 ∈ (1...𝑁) ∧ 2 ∈ (1...𝑁)) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
12015, 21, 119syl2anc 584 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
121 df-ne 2944 . . . . . . . 8 ((((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
122121rexbii 3181 . . . . . . 7 (∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ∃𝑗 ∈ (1...𝑁) ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
123 rexnal 3169 . . . . . . 7 (∃𝑗 ∈ (1...𝑁) ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
124122, 123bitri 274 . . . . . 6 (∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
125124rexbii 3181 . . . . 5 (∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ∃𝑖 ∈ (1...𝑁) ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
126 rexnal 3169 . . . . 5 (∃𝑖 ∈ (1...𝑁) ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
127125, 126bitri 274 . . . 4 (∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
128120, 127sylib 217 . . 3 (𝑁 ∈ (ℤ‘2) → ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
12929, 29axlowdimlem5 27314 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
13011, 29axlowdimlem5 27314 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
13129, 11axlowdimlem5 27314 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
132 colinearalg 27278 . . . 4 ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)))))
133129, 130, 131, 132syl3anc 1370 . . 3 (𝑁 ∈ (ℤ‘2) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)))))
134128, 133mtbird 325 . 2 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
135 axlowdimlem6.1 . . . 4 𝐴 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
136 axlowdimlem6.2 . . . . 5 𝐵 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
137 axlowdimlem6.3 . . . . 5 𝐶 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
138136, 137opeq12i 4809 . . . 4 𝐵, 𝐶⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩
139135, 138breq12i 5083 . . 3 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
140137, 135opeq12i 4809 . . . 4 𝐶, 𝐴⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩
141136, 140breq12i 5083 . . 3 (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
142135, 136opeq12i 4809 . . . 4 𝐴, 𝐵⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩
143137, 142breq12i 5083 . . 3 (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
144139, 141, 1433orbi123i 1155 . 2 ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
145134, 144sylnibr 329 1 (𝑁 ∈ (ℤ‘2) → ¬ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cmin 11205  cn 11973  2c2 12028  3c3 12029  cz 12319  cuz 12582  ...cfz 13239  𝔼cee 27256   Btwn cbtwn 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-ee 27259  df-btwn 27260
This theorem is referenced by:  axlowdim2  27328  axlowdim  27329
  Copyright terms: Public domain W3C validator