MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wecmpep Structured version   Visualization version   GIF version

Theorem wecmpep 5611
Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
wecmpep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))

Proof of Theorem wecmpep
StepHypRef Expression
1 weso 5610 . 2 ( E We 𝐴 → E Or 𝐴)
2 solin 5554 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
3 epel 5522 . . . 4 (𝑥 E 𝑦𝑥𝑦)
4 biid 261 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 epel 5522 . . . 4 (𝑦 E 𝑥𝑦𝑥)
63, 4, 53orbi123i 1156 . . 3 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
72, 6sylib 218 . 2 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
81, 7sylan 580 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  wcel 2113   class class class wbr 5093   E cep 5518   Or wor 5526   We wwe 5571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-eprel 5519  df-so 5528  df-we 5574
This theorem is referenced by:  tz7.7  6337
  Copyright terms: Public domain W3C validator