![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wecmpep | Structured version Visualization version GIF version |
Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
wecmpep | ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso 5666 | . 2 ⊢ ( E We 𝐴 → E Or 𝐴) | |
2 | solin 5612 | . . 3 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | |
3 | epel 5582 | . . . 4 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | biid 260 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
5 | epel 5582 | . . . 4 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
6 | 3, 4, 5 | 3orbi123i 1154 | . . 3 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
7 | 2, 6 | sylib 217 | . 2 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
8 | 1, 7 | sylan 578 | 1 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ w3o 1084 ∈ wcel 2104 class class class wbr 5147 E cep 5578 Or wor 5586 We wwe 5629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-so 5588 df-we 5632 |
This theorem is referenced by: tz7.7 6389 |
Copyright terms: Public domain | W3C validator |