Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wecmpep | Structured version Visualization version GIF version |
Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
wecmpep | ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso 5581 | . 2 ⊢ ( E We 𝐴 → E Or 𝐴) | |
2 | solin 5529 | . . 3 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | |
3 | epel 5499 | . . . 4 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | biid 260 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
5 | epel 5499 | . . . 4 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
6 | 3, 4, 5 | 3orbi123i 1155 | . . 3 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
7 | 2, 6 | sylib 217 | . 2 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
8 | 1, 7 | sylan 580 | 1 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 ∈ wcel 2110 class class class wbr 5079 E cep 5495 Or wor 5503 We wwe 5544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-eprel 5496 df-so 5505 df-we 5547 |
This theorem is referenced by: tz7.7 6291 |
Copyright terms: Public domain | W3C validator |