MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wecmpep Structured version   Visualization version   GIF version

Theorem wecmpep 5692
Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
wecmpep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))

Proof of Theorem wecmpep
StepHypRef Expression
1 weso 5691 . 2 ( E We 𝐴 → E Or 𝐴)
2 solin 5634 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
3 epel 5602 . . . 4 (𝑥 E 𝑦𝑥𝑦)
4 biid 261 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 epel 5602 . . . 4 (𝑦 E 𝑥𝑦𝑥)
63, 4, 53orbi123i 1156 . . 3 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
72, 6sylib 218 . 2 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
81, 7sylan 579 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  wcel 2108   class class class wbr 5166   E cep 5598   Or wor 5606   We wwe 5651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-so 5608  df-we 5654
This theorem is referenced by:  tz7.7  6421
  Copyright terms: Public domain W3C validator