Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2 Structured version   Visualization version   GIF version

Theorem dfxlim2 45819
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2.k 𝑘𝐹
dfxlim2.m (𝜑𝑀 ∈ ℤ)
dfxlim2.z 𝑍 = (ℤ𝑀)
dfxlim2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐴(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem dfxlim2
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfxlim2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 dfxlim2.z . . 3 𝑍 = (ℤ𝑀)
3 dfxlim2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3dfxlim2v 45818 . 2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))))
5 biid 261 . . 3 (𝐹𝐴𝐹𝐴)
6 breq2 5106 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
76rexralbidv 3201 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
8 fveq2 6840 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3296 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥))
10 dfxlim2.k . . . . . . . . . . 11 𝑘𝐹
11 nfcv 2891 . . . . . . . . . . 11 𝑘𝑙
1210, 11nffv 6850 . . . . . . . . . 10 𝑘(𝐹𝑙)
13 nfcv 2891 . . . . . . . . . 10 𝑘
14 nfcv 2891 . . . . . . . . . 10 𝑘𝑥
1512, 13, 14nfbr 5149 . . . . . . . . 9 𝑘(𝐹𝑙) ≤ 𝑥
16 nfv 1914 . . . . . . . . 9 𝑙(𝐹𝑘) ≤ 𝑥
17 fveq2 6840 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1817breq1d 5112 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1915, 16, 18cbvralw 3278 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
209, 19bitrdi 287 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2120cbvrexvw 3214 . . . . . 6 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
227, 21bitrdi 287 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2322cbvralvw 3213 . . . 4 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
2423anbi2i 623 . . 3 ((𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
25 breq1 5105 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
2625rexralbidv 3201 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
278raleqdv 3296 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑙 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑙)))
2814, 13, 12nfbr 5149 . . . . . . . . 9 𝑘 𝑥 ≤ (𝐹𝑙)
29 nfv 1914 . . . . . . . . 9 𝑙 𝑥 ≤ (𝐹𝑘)
3017breq2d 5114 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑘)))
3128, 29, 30cbvralw 3278 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3227, 31bitrdi 287 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3332cbvrexvw 3214 . . . . . 6 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3426, 33bitrdi 287 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3534cbvralvw 3213 . . . 4 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3635anbi2i 623 . . 3 ((𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ↔ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
375, 24, 363orbi123i 1156 . 2 ((𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))) ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
384, 37bitrdi 287 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183  cle 11185  cz 12505  cuz 12769  cli 15426  ~~>*clsxlim 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-ordt 17440  df-ps 18501  df-tsr 18502  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-lm 23092  df-xms 24184  df-ms 24185  df-xlim 45790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator