Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2 Structured version   Visualization version   GIF version

Theorem dfxlim2 42487
 Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2.k 𝑘𝐹
dfxlim2.m (𝜑𝑀 ∈ ℤ)
dfxlim2.z 𝑍 = (ℤ𝑀)
dfxlim2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐴(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem dfxlim2
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfxlim2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 dfxlim2.z . . 3 𝑍 = (ℤ𝑀)
3 dfxlim2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3dfxlim2v 42486 . 2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))))
5 biid 264 . . 3 (𝐹𝐴𝐹𝐴)
6 breq2 5037 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
76rexralbidv 3263 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
8 fveq2 6649 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
98raleqdv 3367 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥))
10 dfxlim2.k . . . . . . . . . . 11 𝑘𝐹
11 nfcv 2958 . . . . . . . . . . 11 𝑘𝑙
1210, 11nffv 6659 . . . . . . . . . 10 𝑘(𝐹𝑙)
13 nfcv 2958 . . . . . . . . . 10 𝑘
14 nfcv 2958 . . . . . . . . . 10 𝑘𝑥
1512, 13, 14nfbr 5080 . . . . . . . . 9 𝑘(𝐹𝑙) ≤ 𝑥
16 nfv 1915 . . . . . . . . 9 𝑙(𝐹𝑘) ≤ 𝑥
17 fveq2 6649 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1817breq1d 5043 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1915, 16, 18cbvralw 3390 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
209, 19syl6bb 290 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2120cbvrexvw 3400 . . . . . 6 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
227, 21syl6bb 290 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2322cbvralvw 3399 . . . 4 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
2423anbi2i 625 . . 3 ((𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
25 breq1 5036 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
2625rexralbidv 3263 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
278raleqdv 3367 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑙 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑙)))
2814, 13, 12nfbr 5080 . . . . . . . . 9 𝑘 𝑥 ≤ (𝐹𝑙)
29 nfv 1915 . . . . . . . . 9 𝑙 𝑥 ≤ (𝐹𝑘)
3017breq2d 5045 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑘)))
3128, 29, 30cbvralw 3390 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3227, 31syl6bb 290 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3332cbvrexvw 3400 . . . . . 6 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3426, 33syl6bb 290 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3534cbvralvw 3399 . . . 4 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
3635anbi2i 625 . . 3 ((𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ↔ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
375, 24, 363orbi123i 1153 . 2 ((𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))) ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
384, 37syl6bb 290 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   = wceq 1538   ∈ wcel 2112  Ⅎwnfc 2939  ∀wral 3109  ∃wrex 3110   class class class wbr 5033  ⟶wf 6324  ‘cfv 6328  ℝcr 10529  +∞cpnf 10665  -∞cmnf 10666  ℝ*cxr 10667   ≤ cle 10669  ℤcz 11973  ℤ≥cuz 12235   ⇝ cli 14837  ~~>*clsxlim 42457 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-rest 16692  df-topn 16693  df-topgen 16713  df-ordt 16770  df-ps 17806  df-tsr 17807  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-lm 21838  df-xms 22931  df-ms 22932  df-xlim 42458 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator