Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2 Structured version   Visualization version   GIF version

Theorem dfxlim2 45265
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2.k β„²π‘˜πΉ
dfxlim2.m (πœ‘ β†’ 𝑀 ∈ β„€)
dfxlim2.z 𝑍 = (β„€β‰₯β€˜π‘€)
dfxlim2.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
Assertion
Ref Expression
dfxlim2 (πœ‘ β†’ (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯) ∨ (𝐴 = +∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜)))))
Distinct variable groups:   𝑗,𝐹,π‘₯   𝑗,𝑍,π‘₯   𝑗,π‘˜,π‘₯
Allowed substitution hints:   πœ‘(π‘₯,𝑗,π‘˜)   𝐴(π‘₯,𝑗,π‘˜)   𝐹(π‘˜)   𝑀(π‘₯,𝑗,π‘˜)   𝑍(π‘˜)

Proof of Theorem dfxlim2
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfxlim2.m . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
2 dfxlim2.z . . 3 𝑍 = (β„€β‰₯β€˜π‘€)
3 dfxlim2.f . . 3 (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
41, 2, 3dfxlim2v 45264 . 2 (πœ‘ β†’ (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦) ∨ (𝐴 = +∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™)))))
5 biid 260 . . 3 (𝐹 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)
6 breq2 5156 . . . . . . 7 (𝑦 = π‘₯ β†’ ((πΉβ€˜π‘™) ≀ 𝑦 ↔ (πΉβ€˜π‘™) ≀ π‘₯))
76rexralbidv 3218 . . . . . 6 (𝑦 = π‘₯ β†’ (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦 ↔ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ π‘₯))
8 fveq2 6902 . . . . . . . . 9 (𝑖 = 𝑗 β†’ (β„€β‰₯β€˜π‘–) = (β„€β‰₯β€˜π‘—))
98raleqdv 3323 . . . . . . . 8 (𝑖 = 𝑗 β†’ (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ π‘₯ ↔ βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘™) ≀ π‘₯))
10 dfxlim2.k . . . . . . . . . . 11 β„²π‘˜πΉ
11 nfcv 2899 . . . . . . . . . . 11 β„²π‘˜π‘™
1210, 11nffv 6912 . . . . . . . . . 10 β„²π‘˜(πΉβ€˜π‘™)
13 nfcv 2899 . . . . . . . . . 10 β„²π‘˜ ≀
14 nfcv 2899 . . . . . . . . . 10 β„²π‘˜π‘₯
1512, 13, 14nfbr 5199 . . . . . . . . 9 β„²π‘˜(πΉβ€˜π‘™) ≀ π‘₯
16 nfv 1909 . . . . . . . . 9 Ⅎ𝑙(πΉβ€˜π‘˜) ≀ π‘₯
17 fveq2 6902 . . . . . . . . . 10 (𝑙 = π‘˜ β†’ (πΉβ€˜π‘™) = (πΉβ€˜π‘˜))
1817breq1d 5162 . . . . . . . . 9 (𝑙 = π‘˜ β†’ ((πΉβ€˜π‘™) ≀ π‘₯ ↔ (πΉβ€˜π‘˜) ≀ π‘₯))
1915, 16, 18cbvralw 3301 . . . . . . . 8 (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘™) ≀ π‘₯ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯)
209, 19bitrdi 286 . . . . . . 7 (𝑖 = 𝑗 β†’ (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ π‘₯ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯))
2120cbvrexvw 3233 . . . . . 6 (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ π‘₯ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯)
227, 21bitrdi 286 . . . . 5 (𝑦 = π‘₯ β†’ (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦 ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯))
2322cbvralvw 3232 . . . 4 (βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦 ↔ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯)
2423anbi2i 621 . . 3 ((𝐴 = -∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦) ↔ (𝐴 = -∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯))
25 breq1 5155 . . . . . . 7 (𝑦 = π‘₯ β†’ (𝑦 ≀ (πΉβ€˜π‘™) ↔ π‘₯ ≀ (πΉβ€˜π‘™)))
2625rexralbidv 3218 . . . . . 6 (𝑦 = π‘₯ β†’ (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™) ↔ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘™)))
278raleqdv 3323 . . . . . . . 8 (𝑖 = 𝑗 β†’ (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘™) ↔ βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘™)))
2814, 13, 12nfbr 5199 . . . . . . . . 9 β„²π‘˜ π‘₯ ≀ (πΉβ€˜π‘™)
29 nfv 1909 . . . . . . . . 9 Ⅎ𝑙 π‘₯ ≀ (πΉβ€˜π‘˜)
3017breq2d 5164 . . . . . . . . 9 (𝑙 = π‘˜ β†’ (π‘₯ ≀ (πΉβ€˜π‘™) ↔ π‘₯ ≀ (πΉβ€˜π‘˜)))
3128, 29, 30cbvralw 3301 . . . . . . . 8 (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘™) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜))
3227, 31bitrdi 286 . . . . . . 7 (𝑖 = 𝑗 β†’ (βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘™) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜)))
3332cbvrexvw 3233 . . . . . 6 (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘™) ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜))
3426, 33bitrdi 286 . . . . 5 (𝑦 = π‘₯ β†’ (βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™) ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜)))
3534cbvralvw 3232 . . . 4 (βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™) ↔ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜))
3635anbi2i 621 . . 3 ((𝐴 = +∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™)) ↔ (𝐴 = +∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜)))
375, 24, 363orbi123i 1153 . 2 ((𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘™) ≀ 𝑦) ∨ (𝐴 = +∞ ∧ βˆ€π‘¦ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘™ ∈ (β„€β‰₯β€˜π‘–)𝑦 ≀ (πΉβ€˜π‘™))) ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯) ∨ (𝐴 = +∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜))))
384, 37bitrdi 286 1 (πœ‘ β†’ (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ≀ π‘₯) ∨ (𝐴 = +∞ ∧ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ ≀ (πΉβ€˜π‘˜)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098  β„²wnfc 2879  βˆ€wral 3058  βˆƒwrex 3067   class class class wbr 5152  βŸΆwf 6549  β€˜cfv 6553  β„cr 11145  +∞cpnf 11283  -∞cmnf 11284  β„*cxr 11285   ≀ cle 11287  β„€cz 12596  β„€β‰₯cuz 12860   ⇝ cli 15468  ~~>*clsxlim 45235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fl 13797  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-rlim 15473  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-rest 17411  df-topn 17412  df-topgen 17432  df-ordt 17490  df-ps 18565  df-tsr 18566  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-lm 23153  df-xms 24246  df-ms 24247  df-xlim 45236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator