Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxlim2 | Structured version Visualization version GIF version |
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
dfxlim2.k | ⊢ Ⅎ𝑘𝐹 |
dfxlim2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dfxlim2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dfxlim2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
dfxlim2 | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfxlim2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | dfxlim2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | dfxlim2.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 1, 2, 3 | dfxlim2v 43388 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))))) |
5 | biid 260 | . . 3 ⊢ (𝐹 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴) | |
6 | breq2 5078 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
7 | 6 | rexralbidv 3230 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
8 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
9 | 8 | raleqdv 3348 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥)) |
10 | dfxlim2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝐹 | |
11 | nfcv 2907 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝑙 | |
12 | 10, 11 | nffv 6784 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
13 | nfcv 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑘 ≤ | |
14 | nfcv 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑥 | |
15 | 12, 13, 14 | nfbr 5121 | . . . . . . . . 9 ⊢ Ⅎ𝑘(𝐹‘𝑙) ≤ 𝑥 |
16 | nfv 1917 | . . . . . . . . 9 ⊢ Ⅎ𝑙(𝐹‘𝑘) ≤ 𝑥 | |
17 | fveq2 6774 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
18 | 17 | breq1d 5084 | . . . . . . . . 9 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
19 | 15, 16, 18 | cbvralw 3373 | . . . . . . . 8 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
20 | 9, 19 | bitrdi 287 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
21 | 20 | cbvrexvw 3384 | . . . . . 6 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
22 | 7, 21 | bitrdi 287 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
23 | 22 | cbvralvw 3383 | . . . 4 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
24 | 23 | anbi2i 623 | . . 3 ⊢ ((𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦) ↔ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
25 | breq1 5077 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑙))) | |
26 | 25 | rexralbidv 3230 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑙))) |
27 | 8 | raleqdv 3348 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑙))) |
28 | 14, 13, 12 | nfbr 5121 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑥 ≤ (𝐹‘𝑙) |
29 | nfv 1917 | . . . . . . . . 9 ⊢ Ⅎ𝑙 𝑥 ≤ (𝐹‘𝑘) | |
30 | 17 | breq2d 5086 | . . . . . . . . 9 ⊢ (𝑙 = 𝑘 → (𝑥 ≤ (𝐹‘𝑙) ↔ 𝑥 ≤ (𝐹‘𝑘))) |
31 | 28, 29, 30 | cbvralw 3373 | . . . . . . . 8 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) |
32 | 27, 31 | bitrdi 287 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑙) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) |
33 | 32 | cbvrexvw 3384 | . . . . . 6 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑙) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) |
34 | 26, 33 | bitrdi 287 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) |
35 | 34 | cbvralvw 3383 | . . . 4 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) |
36 | 35 | anbi2i 623 | . . 3 ⊢ ((𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ↔ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) |
37 | 5, 24, 36 | 3orbi123i 1155 | . 2 ⊢ ((𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦) ∨ (𝐴 = +∞ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
38 | 4, 37 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 ≤ cle 11010 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 ~~>*clsxlim 43359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fl 13512 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-ordt 17212 df-ps 18284 df-tsr 18285 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-lm 22380 df-xms 23473 df-ms 23474 df-xlim 43360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |