Step | Hyp | Ref
| Expression |
1 | | sticksstones22.4 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
3 | 2 | fveq2d 6796 |
. 2
⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)})) |
4 | | sticksstones22.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
5 | | breq2 5081 |
. . . . . . . 8
⊢ (𝑥 = 0 → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥 ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) |
6 | 5 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0))) |
7 | 6 | abbidv 2802 |
. . . . . 6
⊢ (𝑥 = 0 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)}) |
8 | 7 | fveq2d 6796 |
. . . . 5
⊢ (𝑥 = 0 →
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)})) |
9 | | oveq1 7302 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑥 + (♯‘𝑆)) = (0 + (♯‘𝑆))) |
10 | 9 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((0 + (♯‘𝑆))C(♯‘𝑆))) |
11 | 8, 10 | eqeq12d 2749 |
. . . 4
⊢ (𝑥 = 0 →
((♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆)))) |
12 | | breq2 5081 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥 ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) |
13 | 12 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦))) |
14 | 13 | abbidv 2802 |
. . . . . 6
⊢ (𝑥 = 𝑦 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) |
15 | 14 | fveq2d 6796 |
. . . . 5
⊢ (𝑥 = 𝑦 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)})) |
16 | | oveq1 7302 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 + (♯‘𝑆)) = (𝑦 + (♯‘𝑆))) |
17 | 16 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) |
18 | 15, 17 | eqeq12d 2749 |
. . . 4
⊢ (𝑥 = 𝑦 → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆)))) |
19 | | breq2 5081 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥 ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) |
20 | 19 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)))) |
21 | 20 | abbidv 2802 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))}) |
22 | 21 | fveq2d 6796 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))})) |
23 | | oveq1 7302 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑥 + (♯‘𝑆)) = ((𝑦 + 1) + (♯‘𝑆))) |
24 | 23 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
25 | 22, 24 | eqeq12d 2749 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))}) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))) |
26 | | breq2 5081 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥 ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)) |
27 | 26 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁))) |
28 | 27 | abbidv 2802 |
. . . . . 6
⊢ (𝑥 = 𝑁 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
29 | 28 | fveq2d 6796 |
. . . . 5
⊢ (𝑥 = 𝑁 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)})) |
30 | | oveq1 7302 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 + (♯‘𝑆)) = (𝑁 + (♯‘𝑆))) |
31 | 30 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
32 | 29, 31 | eqeq12d 2749 |
. . . 4
⊢ (𝑥 = 𝑁 → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))) |
33 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → 𝑓:𝑆⟶ℕ0) |
34 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0) |
35 | | sticksstones22.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ Fin) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓:𝑆⟶ℕ0) → 𝑆 ∈ Fin) |
37 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓:𝑆⟶ℕ0) → 𝑓:𝑆⟶ℕ0) |
38 | 37 | ffvelcdmda 6981 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ 𝑆) → (𝑓‘𝑖) ∈
ℕ0) |
39 | 36, 38 | fsumnn0cl 15476 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓:𝑆⟶ℕ0) →
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
40 | 33, 39 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
41 | 40 | nn0ge0d 12324 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → 0 ≤ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
42 | | 0red 11006 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → 0 ∈
ℝ) |
43 | 40 | nn0red 12322 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
44 | 42, 43 | lenltd 11149 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → (0 ≤ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ↔ ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < 0)) |
45 | 41, 44 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < 0) |
46 | 34, 45 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0 ∧ ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < 0)) |
47 | 43, 42 | eqleltd 11147 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0 ↔ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0 ∧ ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < 0))) |
48 | 46, 47 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0) |
49 | 33, 48 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) |
50 | 49 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0))) |
51 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → 𝑓:𝑆⟶ℕ0) |
52 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0) |
53 | | 0red 11006 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → 0 ∈
ℝ) |
54 | 53 | leidd 11569 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → 0 ≤ 0) |
55 | 52, 54 | eqbrtrd 5099 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0) |
56 | 51, 55 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)) |
57 | 56 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0))) |
58 | 50, 57 | impbid 211 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0) ↔ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0))) |
59 | 58 | abbidv 2802 |
. . . . . 6
⊢ (𝜑 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)}) |
60 | 59 | fveq2d 6796 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)})) |
61 | | 0nn0 12276 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
62 | 61 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
63 | | sticksstones22.3 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ≠ ∅) |
64 | | eqid 2733 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)} |
65 | 62, 35, 63, 64 | sticksstones21 40149 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)}) = ((0 + ((♯‘𝑆) −
1))C((♯‘𝑆)
− 1))) |
66 | | hashnncl 14109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ Fin →
((♯‘𝑆) ∈
ℕ ↔ 𝑆 ≠
∅)) |
67 | 35, 66 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) |
68 | 67 | bicomd 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆 ≠ ∅ ↔ (♯‘𝑆) ∈
ℕ)) |
69 | 68 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ≠ ∅ → (♯‘𝑆) ∈
ℕ)) |
70 | 63, 69 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ) |
71 | 70 | nncnd 12017 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑆) ∈
ℂ) |
72 | | 1cnd 10998 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
73 | 71, 72 | subcld 11360 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝑆) − 1) ∈
ℂ) |
74 | 73 | addid2d 11204 |
. . . . . . . . 9
⊢ (𝜑 → (0 + ((♯‘𝑆) − 1)) =
((♯‘𝑆) −
1)) |
75 | 74 | oveq1d 7310 |
. . . . . . . 8
⊢ (𝜑 → ((0 +
((♯‘𝑆) −
1))C((♯‘𝑆)
− 1)) = (((♯‘𝑆) − 1)C((♯‘𝑆) − 1))) |
76 | | nnm1nn0 12302 |
. . . . . . . . . 10
⊢
((♯‘𝑆)
∈ ℕ → ((♯‘𝑆) − 1) ∈
ℕ0) |
77 | 70, 76 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑆) − 1) ∈
ℕ0) |
78 | | bcnn 14054 |
. . . . . . . . 9
⊢
(((♯‘𝑆)
− 1) ∈ ℕ0 → (((♯‘𝑆) − 1)C((♯‘𝑆) − 1)) =
1) |
79 | 77, 78 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((♯‘𝑆) −
1)C((♯‘𝑆)
− 1)) = 1) |
80 | 75, 79 | eqtrd 2773 |
. . . . . . 7
⊢ (𝜑 → ((0 +
((♯‘𝑆) −
1))C((♯‘𝑆)
− 1)) = 1) |
81 | | eqidd 2734 |
. . . . . . 7
⊢ (𝜑 → 1 = 1) |
82 | 70 | nnnn0d 12321 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
83 | | bcnn 14054 |
. . . . . . . . . 10
⊢
((♯‘𝑆)
∈ ℕ0 → ((♯‘𝑆)C(♯‘𝑆)) = 1) |
84 | 82, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑆)C(♯‘𝑆)) = 1) |
85 | 84 | eqcomd 2739 |
. . . . . . . 8
⊢ (𝜑 → 1 = ((♯‘𝑆)C(♯‘𝑆))) |
86 | 71 | addid2d 11204 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
87 | 86 | eqcomd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑆) = (0 + (♯‘𝑆))) |
88 | 87 | oveq1d 7310 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝑆)C(♯‘𝑆)) = ((0 + (♯‘𝑆))C(♯‘𝑆))) |
89 | 85, 88 | eqtrd 2773 |
. . . . . . 7
⊢ (𝜑 → 1 = ((0 +
(♯‘𝑆))C(♯‘𝑆))) |
90 | 80, 81, 89 | 3eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((0 +
((♯‘𝑆) −
1))C((♯‘𝑆)
− 1)) = ((0 + (♯‘𝑆))C(♯‘𝑆))) |
91 | 65, 90 | eqtrd 2773 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆))) |
92 | 60, 91 | eqtrd 2773 |
. . . 4
⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆))) |
93 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → 𝑓:𝑆⟶ℕ0) |
94 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)) |
95 | 35 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → 𝑆 ∈ Fin) |
96 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → 𝑓:𝑆⟶ℕ0) |
97 | 96 | ffvelcdmda 6981 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ 𝑆) → (𝑓‘𝑖) ∈
ℕ0) |
98 | 95, 97 | fsumnn0cl 15476 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) →
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
99 | 93, 98 | syldan 590 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
100 | 99 | nn0red 12322 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
101 | | nn0re 12270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
ℝ) |
103 | 102 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → 𝑦 ∈ ℝ) |
104 | | 1red 11004 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → 1 ∈
ℝ) |
105 | 103, 104 | readdcld 11032 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (𝑦 + 1) ∈ ℝ) |
106 | 100, 105 | leloed 11146 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1) ↔ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1) ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
107 | 94, 106 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1) ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) |
108 | 99 | nn0zd 12452 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℤ) |
109 | | nn0z 12371 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
110 | 109 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
ℤ) |
111 | 110 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → 𝑦 ∈ ℤ) |
112 | | zleltp1 12399 |
. . . . . . . . . . . . . . . . 17
⊢
((Σ𝑖 ∈
𝑆 (𝑓‘𝑖) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1))) |
113 | 112 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢
((Σ𝑖 ∈
𝑆 (𝑓‘𝑖) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1) ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) |
114 | 108, 111,
113 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1) ↔ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) |
115 | 114 | orbi1d 913 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → ((Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1) ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) ↔ (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
116 | 107, 115 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) |
117 | 93, 116 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧
(Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
118 | | andi 1004 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑆⟶ℕ0 ∧
(Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ↔ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
119 | 118 | bicomi 223 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ↔ (𝑓:𝑆⟶ℕ0 ∧
(Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦 ∨ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
120 | 117, 119 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
121 | 120 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))))) |
122 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑓:𝑆⟶ℕ0) |
123 | 122, 98 | syldan 590 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
124 | 123 | nn0red 12322 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
125 | 102 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ) |
126 | | 1red 11004 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 1 ∈ ℝ) |
127 | 125, 126 | readdcld 11032 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → (𝑦 + 1) ∈ ℝ) |
128 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) |
129 | 125 | lep1d 11934 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑦 ≤ (𝑦 + 1)) |
130 | 124, 125,
127, 128, 129 | letrd 11160 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)) |
131 | 122, 130 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) |
132 | 131 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)))) |
133 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → 𝑓:𝑆⟶ℕ0) |
134 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) |
135 | 102 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → 𝑦 ∈ ℝ) |
136 | | 1red 11004 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → 1 ∈
ℝ) |
137 | 135, 136 | readdcld 11032 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → (𝑦 + 1) ∈ ℝ) |
138 | 137 | leidd 11569 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → (𝑦 + 1) ≤ (𝑦 + 1)) |
139 | 134, 138 | eqbrtrd 5099 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)) |
140 | 133, 139 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))) |
141 | 140 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)))) |
142 | 132, 141 | jaod 855 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)))) |
143 | 121, 142 | impbid 211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1)) ↔ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))))) |
144 | 143 | abbidv 2802 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))} = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))}) |
145 | | unab 4235 |
. . . . . . . . . 10
⊢ ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))} |
146 | 145 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))}) |
147 | 146 | eqcomd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) |
148 | 144, 147 | eqtrd 2773 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) |
149 | 148 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) |
150 | 149 | fveq2d 6796 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))}) = (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}))) |
151 | 35 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑆 ∈ Fin) |
152 | | fzfid 13721 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(0...𝑦) ∈
Fin) |
153 | 151, 152 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑆 ∈ Fin ∧ (0...𝑦) ∈ Fin)) |
154 | | xpfi 9113 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Fin ∧ (0...𝑦) ∈ Fin) → (𝑆 × (0...𝑦)) ∈ Fin) |
155 | 153, 154 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑆 × (0...𝑦)) ∈ Fin) |
156 | | pwfi 8986 |
. . . . . . . . . . 11
⊢ ((𝑆 × (0...𝑦)) ∈ Fin ↔ 𝒫 (𝑆 × (0...𝑦)) ∈ Fin) |
157 | 155, 156 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝒫
(𝑆 × (0...𝑦)) ∈ Fin) |
158 | | fsetsspwxp 8661 |
. . . . . . . . . . 11
⊢ {𝑓 ∣ 𝑓:𝑆⟶(0...𝑦)} ⊆ 𝒫 (𝑆 × (0...𝑦)) |
159 | 158 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ 𝑓:𝑆⟶(0...𝑦)} ⊆ 𝒫 (𝑆 × (0...𝑦))) |
160 | 157, 159 | ssfid 9070 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ 𝑓:𝑆⟶(0...𝑦)} ∈ Fin) |
161 | | ffn 6618 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑆⟶ℕ0 → 𝑓 Fn 𝑆) |
162 | 122, 161 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑓 Fn 𝑆) |
163 | | 0zd 12359 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 0 ∈ ℤ) |
164 | 110 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑦 ∈ ℤ) |
165 | 164 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝑦 ∈ ℤ) |
166 | 122 | ffvelcdmda 6981 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈
ℕ0) |
167 | 166 | nn0zd 12452 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ ℤ) |
168 | 166 | nn0ge0d 12324 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 0 ≤ (𝑓‘𝑠)) |
169 | 128 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) |
170 | 125 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → 𝑦 ∈ ℝ) |
171 | 166 | nn0red 12322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ ℝ) |
172 | 171 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → (𝑓‘𝑠) ∈ ℝ) |
173 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
174 | 173 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
175 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → 𝑦 < (𝑓‘𝑠)) |
176 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝜑) |
177 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝑦 ∈ ℕ0) |
178 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝑓:𝑆⟶ℕ0) |
179 | 176, 177,
178 | jca31 514 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → ((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0)) |
180 | | difssd 4070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑆 ∖ {𝑠}) ⊆ 𝑆) |
181 | 35, 180 | ssfid 9070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑆 ∖ {𝑠}) ∈ Fin) |
182 | 181 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin) |
183 | 182 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin) |
184 | | eldifi 4064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (𝑆 ∖ {𝑠}) → 𝑖 ∈ 𝑆) |
185 | 184 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) → 𝑖 ∈ 𝑆) |
186 | 97 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) ∧ 𝑖 ∈ 𝑆) → (𝑓‘𝑖) ∈
ℕ0) |
187 | 185, 186 | mpdan 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) → (𝑓‘𝑖) ∈
ℕ0) |
188 | 183, 187 | fsumnn0cl 15476 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) →
Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
189 | 179, 188 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
190 | 189 | nn0ge0d 12324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)) |
191 | | difssd 4070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ⊆ 𝑆) |
192 | 95, 191 | ssfid 9070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin) |
193 | 192, 187 | fsumnn0cl 15476 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) →
Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
194 | 179, 193 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
195 | 194 | nn0red 12322 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈ ℝ) |
196 | 171, 195 | addge01d 11591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ↔ (𝑓‘𝑠) ≤ ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)))) |
197 | 190, 196 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ≤ ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
198 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑆) |
199 | 179, 198 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆)) |
200 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) |
201 | | nfcv 2902 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖(𝑓‘𝑠) |
202 | 95 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) → 𝑆 ∈ Fin) |
203 | 97 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) ∧ 𝑖 ∈ 𝑆) → (𝑓‘𝑖) ∈
ℕ0) |
204 | 203 | nn0cnd 12323 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) ∧ 𝑖 ∈ 𝑆) → (𝑓‘𝑖) ∈ ℂ) |
205 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑆) |
206 | | fveq2 6792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑠 → (𝑓‘𝑖) = (𝑓‘𝑠)) |
207 | 200, 201,
202, 204, 205, 206 | fsumsplit1 15485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
208 | 199, 207 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
209 | 208 | eqcomd 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)) = Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
210 | 197, 209 | breqtrd 5103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ≤ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
211 | 210 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → (𝑓‘𝑠) ≤ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
212 | 170, 172,
174, 175, 211 | ltletrd 11163 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → 𝑦 < Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
213 | 170, 174 | ltnled 11150 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → (𝑦 < Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ↔ ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) |
214 | 212, 213 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) |
215 | 169, 214 | pm2.21dd 194 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) ∧ 𝑦 < (𝑓‘𝑠)) → ¬ 𝑦 < (𝑓‘𝑠)) |
216 | 215 | pm2.01da 795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → ¬ 𝑦 < (𝑓‘𝑠)) |
217 | 177, 101 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → 𝑦 ∈ ℝ) |
218 | 171, 217 | lenltd 11149 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → ((𝑓‘𝑠) ≤ 𝑦 ↔ ¬ 𝑦 < (𝑓‘𝑠))) |
219 | 216, 218 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ≤ 𝑦) |
220 | 163, 165,
167, 168, 219 | elfzd 13275 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ (0...𝑦)) |
221 | 220 | ralrimiva 3137 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...𝑦)) |
222 | 162, 221 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → (𝑓 Fn 𝑆 ∧ ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...𝑦))) |
223 | | ffnfv 7012 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑆⟶(0...𝑦) ↔ (𝑓 Fn 𝑆 ∧ ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...𝑦))) |
224 | 222, 223 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑓:𝑆⟶(0...𝑦)) |
225 | 224 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) → 𝑓:𝑆⟶(0...𝑦))) |
226 | 225 | ss2abdv 3999 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ⊆ {𝑓 ∣ 𝑓:𝑆⟶(0...𝑦)}) |
227 | 160, 226 | ssfid 9070 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∈ Fin) |
228 | 227 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∈ Fin) |
229 | | fzfid 13721 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(0...(𝑦 + 1)) ∈
Fin) |
230 | 151, 229 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑆 ∈ Fin ∧ (0...(𝑦 + 1)) ∈
Fin)) |
231 | | xpfi 9113 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Fin ∧ (0...(𝑦 + 1)) ∈ Fin) → (𝑆 × (0...(𝑦 + 1))) ∈
Fin) |
232 | 230, 231 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑆 × (0...(𝑦 + 1))) ∈
Fin) |
233 | | pwfi 8986 |
. . . . . . . . . . 11
⊢ ((𝑆 × (0...(𝑦 + 1))) ∈ Fin ↔
𝒫 (𝑆 ×
(0...(𝑦 + 1))) ∈
Fin) |
234 | 232, 233 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝒫
(𝑆 × (0...(𝑦 + 1))) ∈
Fin) |
235 | | fsetsspwxp 8661 |
. . . . . . . . . . 11
⊢ {𝑓 ∣ 𝑓:𝑆⟶(0...(𝑦 + 1))} ⊆ 𝒫 (𝑆 × (0...(𝑦 + 1))) |
236 | 235 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ 𝑓:𝑆⟶(0...(𝑦 + 1))} ⊆ 𝒫 (𝑆 × (0...(𝑦 + 1)))) |
237 | 234, 236 | ssfid 9070 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ 𝑓:𝑆⟶(0...(𝑦 + 1))} ∈ Fin) |
238 | 161 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → 𝑓 Fn 𝑆) |
239 | | 0zd 12359 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → 0 ∈ ℤ) |
240 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → 𝑦 ∈ ℕ0) |
241 | 240 | nn0zd 12452 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → 𝑦 ∈ ℤ) |
242 | 241 | peano2zd 12457 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑦 + 1) ∈ ℤ) |
243 | 133 | ffvelcdmda 6981 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈
ℕ0) |
244 | 243 | nn0zd 12452 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ ℤ) |
245 | 243 | nn0ge0d 12324 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → 0 ≤ (𝑓‘𝑠)) |
246 | 134 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) |
247 | 137 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑦 + 1) ∈ ℝ) |
248 | 133 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → 𝑓:𝑆⟶ℕ0) |
249 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → 𝑠 ∈ 𝑆) |
250 | 248, 249 | ffvelcdmd 6982 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑓‘𝑠) ∈
ℕ0) |
251 | 250 | nn0red 12322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑓‘𝑠) ∈ ℝ) |
252 | 246, 247 | eqeltrd 2834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
253 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑦 + 1) < (𝑓‘𝑠)) |
254 | 133, 188 | syldan 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
255 | 254 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
256 | 255 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈
ℕ0) |
257 | 256 | nn0ge0d 12324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → 0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)) |
258 | 256 | nn0red 12322 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ∈ ℝ) |
259 | 251, 258 | addge01d 11591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖) ↔ (𝑓‘𝑠) ≤ ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)))) |
260 | 257, 259 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑓‘𝑠) ≤ ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
261 | 133, 207 | syldanl 601 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
262 | 261 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖))) |
263 | 262 | eqcomd 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → ((𝑓‘𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓‘𝑖)) = Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
264 | 260, 263 | breqtrd 5103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑓‘𝑠) ≤ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
265 | 247, 251,
252, 253, 264 | ltletrd 11163 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑦 + 1) < Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
266 | 247, 265 | ltned 11139 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → (𝑦 + 1) ≠ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖)) |
267 | 266 | necomd 2994 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≠ (𝑦 + 1)) |
268 | 246, 267 | pm2.21ddne 3024 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ ℕ0)
∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) ∧ (𝑦 + 1) < (𝑓‘𝑠)) → ¬ (𝑦 + 1) < (𝑓‘𝑠)) |
269 | 268 | pm2.01da 795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → ¬ (𝑦 + 1) < (𝑓‘𝑠)) |
270 | 243 | nn0red 12322 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ ℝ) |
271 | 137 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑦 + 1) ∈ ℝ) |
272 | 270, 271 | lenltd 11149 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → ((𝑓‘𝑠) ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < (𝑓‘𝑠))) |
273 | 269, 272 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ≤ (𝑦 + 1)) |
274 | 239, 242,
244, 245, 273 | elfzd 13275 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) ∧ 𝑠 ∈ 𝑆) → (𝑓‘𝑠) ∈ (0...(𝑦 + 1))) |
275 | 274 | ralrimiva 3137 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...(𝑦 + 1))) |
276 | 238, 275 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → (𝑓 Fn 𝑆 ∧ ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...(𝑦 + 1)))) |
277 | | ffnfv 7012 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑆⟶(0...(𝑦 + 1)) ↔ (𝑓 Fn 𝑆 ∧ ∀𝑠 ∈ 𝑆 (𝑓‘𝑠) ∈ (0...(𝑦 + 1)))) |
278 | 276, 277 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) → 𝑓:𝑆⟶(0...(𝑦 + 1))) |
279 | 278 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) → 𝑓:𝑆⟶(0...(𝑦 + 1)))) |
280 | 279 | ss2abdv 3999 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} ⊆ {𝑓 ∣ 𝑓:𝑆⟶(0...(𝑦 + 1))}) |
281 | 237, 280 | ssfid 9070 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} ∈ Fin) |
282 | 281 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} ∈ Fin) |
283 | | inab 4236 |
. . . . . . . . . 10
⊢ ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))} |
284 | 283 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))}) |
285 | 98 | adantrr 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈
ℕ0) |
286 | 285 | nn0zd 12452 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℤ) |
287 | 286 | zred 12454 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ∈ ℝ) |
288 | 125 | ltp1d 11933 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → 𝑦 < (𝑦 + 1)) |
289 | 287, 125,
127, 128, 288 | lelttrd 11161 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) < (𝑦 + 1)) |
290 | 287, 289 | ltned 11139 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≠ (𝑦 + 1)) |
291 | 290 | neneqd 2943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → ¬ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)) |
292 | 291 | intnand 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → ¬ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))) |
293 | | nan 826 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) → ¬
((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) ↔ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)) → ¬ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
294 | 292, 293 | mpbir 230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ¬
((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
295 | 294 | alrimiv 1926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
∀𝑓 ¬ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
296 | | ab0 4311 |
. . . . . . . . . 10
⊢ ({𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))} = ∅ ↔ ∀𝑓 ¬ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))) |
297 | 295, 296 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1)))} = ∅) |
298 | 284, 297 | eqtrd 2773 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = ∅) |
299 | 298 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = ∅) |
300 | | hashun 14125 |
. . . . . . 7
⊢ (({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∈ Fin ∧ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} ∈ Fin ∧ ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = ∅) →
(♯‘({𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) = ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}))) |
301 | 228, 282,
299, 300 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) = ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}))) |
302 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) |
303 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑦 ∈ ℕ0) |
304 | | 1nn0 12277 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
305 | 304 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 1 ∈
ℕ0) |
306 | 303, 305 | nn0addcld 12325 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (𝑦 + 1) ∈
ℕ0) |
307 | 35 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑆 ∈ Fin) |
308 | 63 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑆 ≠ ∅) |
309 | | eqid 2733 |
. . . . . . . . 9
⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))} |
310 | 306, 307,
308, 309 | sticksstones21 40149 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))}) = (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) |
311 | 302, 310 | oveq12d 7313 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) = (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))) |
312 | 303 | nn0cnd 12323 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑦 ∈ ℂ) |
313 | | 1cnd 10998 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 1 ∈
ℂ) |
314 | 71 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈ ℂ) |
315 | 312, 313,
314 | ppncand 11400 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((𝑦 + 1) + ((♯‘𝑆) − 1)) = (𝑦 + (♯‘𝑆))) |
316 | 315 | oveq1d 7310 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)) = ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))) |
317 | 316 | oveq2d 7311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1)))) |
318 | 82 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈
ℕ0) |
319 | 303, 318 | nn0addcld 12325 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (𝑦 + (♯‘𝑆)) ∈
ℕ0) |
320 | 318 | nn0zd 12452 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈ ℤ) |
321 | | bcpasc 14063 |
. . . . . . . . . 10
⊢ (((𝑦 + (♯‘𝑆)) ∈ ℕ0
∧ (♯‘𝑆)
∈ ℤ) → (((𝑦
+ (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆))) |
322 | 319, 320,
321 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆))) |
323 | 317, 322 | eqtrd 2773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆))) |
324 | 312, 314,
313 | add32d 11230 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((𝑦 + (♯‘𝑆)) + 1) = ((𝑦 + 1) + (♯‘𝑆))) |
325 | 324 | oveq1d 7310 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆)) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
326 | 323, 325 | eqtrd 2773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
327 | 311, 326 | eqtrd 2773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
328 | 301, 327 | eqtrd 2773 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = (𝑦 + 1))})) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
329 | 150, 328 | eqtrd 2773 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ (𝑦 + 1))}) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))) |
330 | 11, 18, 25, 32, 92, 329 | nn0indd 12445 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) →
(♯‘{𝑓 ∣
(𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
331 | 4, 330 | mpdan 683 |
. 2
⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧
Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
332 | 3, 331 | eqtrd 2773 |
1
⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |