Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones22 Structured version   Visualization version   GIF version

Theorem sticksstones22 42156
Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024.)
Hypotheses
Ref Expression
sticksstones22.1 (𝜑𝑁 ∈ ℕ0)
sticksstones22.2 (𝜑𝑆 ∈ Fin)
sticksstones22.3 (𝜑𝑆 ≠ ∅)
sticksstones22.4 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}
Assertion
Ref Expression
sticksstones22 (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓,𝑖   𝜑,𝑓,𝑖
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝑁(𝑖)

Proof of Theorem sticksstones22
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones22.4 . . . 4 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}
21a1i 11 . . 3 (𝜑𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
32fveq2d 6862 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}))
4 sticksstones22.1 . . 3 (𝜑𝑁 ∈ ℕ0)
5 breq2 5111 . . . . . . . 8 (𝑥 = 0 → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥 ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ 0))
65anbi2d 630 . . . . . . 7 (𝑥 = 0 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)))
76abbidv 2795 . . . . . 6 (𝑥 = 0 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)})
87fveq2d 6862 . . . . 5 (𝑥 = 0 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)}))
9 oveq1 7394 . . . . . 6 (𝑥 = 0 → (𝑥 + (♯‘𝑆)) = (0 + (♯‘𝑆)))
109oveq1d 7402 . . . . 5 (𝑥 = 0 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((0 + (♯‘𝑆))C(♯‘𝑆)))
118, 10eqeq12d 2745 . . . 4 (𝑥 = 0 → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆))))
12 breq2 5111 . . . . . . . 8 (𝑥 = 𝑦 → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥 ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦))
1312anbi2d 630 . . . . . . 7 (𝑥 = 𝑦 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)))
1413abbidv 2795 . . . . . 6 (𝑥 = 𝑦 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)})
1514fveq2d 6862 . . . . 5 (𝑥 = 𝑦 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}))
16 oveq1 7394 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + (♯‘𝑆)) = (𝑦 + (♯‘𝑆)))
1716oveq1d 7402 . . . . 5 (𝑥 = 𝑦 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆)))
1815, 17eqeq12d 2745 . . . 4 (𝑥 = 𝑦 → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))))
19 breq2 5111 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥 ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1)))
2019anbi2d 630 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))))
2120abbidv 2795 . . . . . 6 (𝑥 = (𝑦 + 1) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))})
2221fveq2d 6862 . . . . 5 (𝑥 = (𝑦 + 1) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))}))
23 oveq1 7394 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 + (♯‘𝑆)) = ((𝑦 + 1) + (♯‘𝑆)))
2423oveq1d 7402 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
2522, 24eqeq12d 2745 . . . 4 (𝑥 = (𝑦 + 1) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))}) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆))))
26 breq2 5111 . . . . . . . 8 (𝑥 = 𝑁 → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥 ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁))
2726anbi2d 630 . . . . . . 7 (𝑥 = 𝑁 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)))
2827abbidv 2795 . . . . . 6 (𝑥 = 𝑁 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
2928fveq2d 6862 . . . . 5 (𝑥 = 𝑁 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}))
30 oveq1 7394 . . . . . 6 (𝑥 = 𝑁 → (𝑥 + (♯‘𝑆)) = (𝑁 + (♯‘𝑆)))
3130oveq1d 7402 . . . . 5 (𝑥 = 𝑁 → ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
3229, 31eqeq12d 2745 . . . 4 (𝑥 = 𝑁 → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑥)}) = ((𝑥 + (♯‘𝑆))C(♯‘𝑆)) ↔ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))))
33 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → 𝑓:𝑆⟶ℕ0)
34 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → Σ𝑖𝑆 (𝑓𝑖) ≤ 0)
35 sticksstones22.2 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ Fin)
3635adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:𝑆⟶ℕ0) → 𝑆 ∈ Fin)
37 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓:𝑆⟶ℕ0) → 𝑓:𝑆⟶ℕ0)
3837ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:𝑆⟶ℕ0) ∧ 𝑖𝑆) → (𝑓𝑖) ∈ ℕ0)
3936, 38fsumnn0cl 15702 . . . . . . . . . . . . . . 15 ((𝜑𝑓:𝑆⟶ℕ0) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
4033, 39syldan 591 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
4140nn0ge0d 12506 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → 0 ≤ Σ𝑖𝑆 (𝑓𝑖))
42 0red 11177 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → 0 ∈ ℝ)
4340nn0red 12504 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
4442, 43lenltd 11320 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → (0 ≤ Σ𝑖𝑆 (𝑓𝑖) ↔ ¬ Σ𝑖𝑆 (𝑓𝑖) < 0))
4541, 44mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → ¬ Σ𝑖𝑆 (𝑓𝑖) < 0)
4634, 45jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → (Σ𝑖𝑆 (𝑓𝑖) ≤ 0 ∧ ¬ Σ𝑖𝑆 (𝑓𝑖) < 0))
4743, 42eqleltd 11318 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → (Σ𝑖𝑆 (𝑓𝑖) = 0 ↔ (Σ𝑖𝑆 (𝑓𝑖) ≤ 0 ∧ ¬ Σ𝑖𝑆 (𝑓𝑖) < 0)))
4846, 47mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → Σ𝑖𝑆 (𝑓𝑖) = 0)
4933, 48jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0))
5049ex 412 . . . . . . . 8 (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)))
51 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → 𝑓:𝑆⟶ℕ0)
52 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → Σ𝑖𝑆 (𝑓𝑖) = 0)
53 0red 11177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → 0 ∈ ℝ)
5453leidd 11744 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → 0 ≤ 0)
5552, 54eqbrtrd 5129 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → Σ𝑖𝑆 (𝑓𝑖) ≤ 0)
5651, 55jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0))
5756ex 412 . . . . . . . 8 (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)))
5850, 57impbid 212 . . . . . . 7 (𝜑 → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)))
5958abbidv 2795 . . . . . 6 (𝜑 → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)})
6059fveq2d 6862 . . . . 5 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)}) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)}))
61 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
6261a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
63 sticksstones22.3 . . . . . . 7 (𝜑𝑆 ≠ ∅)
64 eqid 2729 . . . . . . 7 {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)}
6562, 35, 63, 64sticksstones21 42155 . . . . . 6 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)}) = ((0 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))
66 hashnncl 14331 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
6735, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
6867bicomd 223 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ≠ ∅ ↔ (♯‘𝑆) ∈ ℕ))
6968biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ≠ ∅ → (♯‘𝑆) ∈ ℕ))
7063, 69mpd 15 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑆) ∈ ℕ)
7170nncnd 12202 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ ℂ)
72 1cnd 11169 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
7371, 72subcld 11533 . . . . . . . . . 10 (𝜑 → ((♯‘𝑆) − 1) ∈ ℂ)
7473addlidd 11375 . . . . . . . . 9 (𝜑 → (0 + ((♯‘𝑆) − 1)) = ((♯‘𝑆) − 1))
7574oveq1d 7402 . . . . . . . 8 (𝜑 → ((0 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)) = (((♯‘𝑆) − 1)C((♯‘𝑆) − 1)))
76 nnm1nn0 12483 . . . . . . . . . 10 ((♯‘𝑆) ∈ ℕ → ((♯‘𝑆) − 1) ∈ ℕ0)
7770, 76syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝑆) − 1) ∈ ℕ0)
78 bcnn 14277 . . . . . . . . 9 (((♯‘𝑆) − 1) ∈ ℕ0 → (((♯‘𝑆) − 1)C((♯‘𝑆) − 1)) = 1)
7977, 78syl 17 . . . . . . . 8 (𝜑 → (((♯‘𝑆) − 1)C((♯‘𝑆) − 1)) = 1)
8075, 79eqtrd 2764 . . . . . . 7 (𝜑 → ((0 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)) = 1)
81 eqidd 2730 . . . . . . 7 (𝜑 → 1 = 1)
8270nnnn0d 12503 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) ∈ ℕ0)
83 bcnn 14277 . . . . . . . . . 10 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆)C(♯‘𝑆)) = 1)
8482, 83syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝑆)C(♯‘𝑆)) = 1)
8584eqcomd 2735 . . . . . . . 8 (𝜑 → 1 = ((♯‘𝑆)C(♯‘𝑆)))
8671addlidd 11375 . . . . . . . . . 10 (𝜑 → (0 + (♯‘𝑆)) = (♯‘𝑆))
8786eqcomd 2735 . . . . . . . . 9 (𝜑 → (♯‘𝑆) = (0 + (♯‘𝑆)))
8887oveq1d 7402 . . . . . . . 8 (𝜑 → ((♯‘𝑆)C(♯‘𝑆)) = ((0 + (♯‘𝑆))C(♯‘𝑆)))
8985, 88eqtrd 2764 . . . . . . 7 (𝜑 → 1 = ((0 + (♯‘𝑆))C(♯‘𝑆)))
9080, 81, 893eqtrd 2768 . . . . . 6 (𝜑 → ((0 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)) = ((0 + (♯‘𝑆))C(♯‘𝑆)))
9165, 90eqtrd 2764 . . . . 5 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆)))
9260, 91eqtrd 2764 . . . 4 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 0)}) = ((0 + (♯‘𝑆))C(♯‘𝑆)))
93 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → 𝑓:𝑆⟶ℕ0)
94 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))
9535ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → 𝑆 ∈ Fin)
96 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → 𝑓:𝑆⟶ℕ0)
9796ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖𝑆) → (𝑓𝑖) ∈ ℕ0)
9895, 97fsumnn0cl 15702 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
9993, 98syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
10099nn0red 12504 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
101 nn0re 12451 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℝ)
103102adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → 𝑦 ∈ ℝ)
104 1red 11175 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → 1 ∈ ℝ)
105103, 104readdcld 11203 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (𝑦 + 1) ∈ ℝ)
106100, 105leloed 11317 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1) ↔ (Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1) ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
10794, 106mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1) ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))
10899nn0zd 12555 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℤ)
109 nn0z 12554 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
111110adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → 𝑦 ∈ ℤ)
112 zleltp1 12584 . . . . . . . . . . . . . . . . 17 ((Σ𝑖𝑆 (𝑓𝑖) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ↔ Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1)))
113112bicomd 223 . . . . . . . . . . . . . . . 16 ((Σ𝑖𝑆 (𝑓𝑖) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1) ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦))
114108, 111, 113syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1) ↔ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦))
115114orbi1d 916 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → ((Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1) ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)) ↔ (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
116107, 115mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))
11793, 116jca 511 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧ (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
118 andi 1009 . . . . . . . . . . . . 13 ((𝑓:𝑆⟶ℕ0 ∧ (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ↔ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
119118bicomi 224 . . . . . . . . . . . 12 (((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ↔ (𝑓:𝑆⟶ℕ0 ∧ (Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦 ∨ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
120117, 119sylibr 234 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
121120ex 412 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1)) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))))
122 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑓:𝑆⟶ℕ0)
123122, 98syldan 591 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
124123nn0red 12504 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
125102adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ)
126 1red 11175 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 1 ∈ ℝ)
127125, 126readdcld 11203 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → (𝑦 + 1) ∈ ℝ)
128 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)
129125lep1d 12114 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑦 ≤ (𝑦 + 1))
130124, 125, 127, 128, 129letrd 11331 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))
131122, 130jca 511 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1)))
132131ex 412 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))))
133 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → 𝑓:𝑆⟶ℕ0)
134 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))
135102adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → 𝑦 ∈ ℝ)
136 1red 11175 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → 1 ∈ ℝ)
137135, 136readdcld 11203 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → (𝑦 + 1) ∈ ℝ)
138137leidd 11744 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → (𝑦 + 1) ≤ (𝑦 + 1))
139134, 138eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))
140133, 139jca 511 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1)))
141140ex 412 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))))
142132, 141jaod 859 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))))
143121, 142impbid 212 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1)) ↔ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))))
144143abbidv 2795 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))} = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))})
145 unab 4271 . . . . . . . . . 10 ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))}
146145a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))})
147146eqcomd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∨ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}))
148144, 147eqtrd 2764 . . . . . . 7 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}))
149148adantr 480 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))} = ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}))
150149fveq2d 6862 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))}) = (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})))
15135adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → 𝑆 ∈ Fin)
152 fzfid 13938 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → (0...𝑦) ∈ Fin)
153151, 152jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → (𝑆 ∈ Fin ∧ (0...𝑦) ∈ Fin))
154 xpfi 9269 . . . . . . . . . . . 12 ((𝑆 ∈ Fin ∧ (0...𝑦) ∈ Fin) → (𝑆 × (0...𝑦)) ∈ Fin)
155153, 154syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑆 × (0...𝑦)) ∈ Fin)
156 pwfi 9268 . . . . . . . . . . 11 ((𝑆 × (0...𝑦)) ∈ Fin ↔ 𝒫 (𝑆 × (0...𝑦)) ∈ Fin)
157155, 156sylib 218 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → 𝒫 (𝑆 × (0...𝑦)) ∈ Fin)
158 fsetsspwxp 8826 . . . . . . . . . . 11 {𝑓𝑓:𝑆⟶(0...𝑦)} ⊆ 𝒫 (𝑆 × (0...𝑦))
159158a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → {𝑓𝑓:𝑆⟶(0...𝑦)} ⊆ 𝒫 (𝑆 × (0...𝑦)))
160157, 159ssfid 9212 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → {𝑓𝑓:𝑆⟶(0...𝑦)} ∈ Fin)
161 ffn 6688 . . . . . . . . . . . . . 14 (𝑓:𝑆⟶ℕ0𝑓 Fn 𝑆)
162122, 161syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑓 Fn 𝑆)
163 0zd 12541 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 0 ∈ ℤ)
164110adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑦 ∈ ℤ)
165164adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝑦 ∈ ℤ)
166122ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℕ0)
167166nn0zd 12555 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℤ)
168166nn0ge0d 12506 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 0 ≤ (𝑓𝑠))
169128ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)
170125ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → 𝑦 ∈ ℝ)
171166nn0red 12504 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℝ)
172171adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → (𝑓𝑠) ∈ ℝ)
173124adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
174173adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
175 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → 𝑦 < (𝑓𝑠))
176 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝜑)
177 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝑦 ∈ ℕ0)
178 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝑓:𝑆⟶ℕ0)
179176, 177, 178jca31 514 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → ((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0))
180 difssd 4100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑆 ∖ {𝑠}) ⊆ 𝑆)
18135, 180ssfid 9212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑆 ∖ {𝑠}) ∈ Fin)
182181adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin)
183182adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin)
184 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (𝑆 ∖ {𝑠}) → 𝑖𝑆)
185184adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) → 𝑖𝑆)
18697adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) ∧ 𝑖𝑆) → (𝑓𝑖) ∈ ℕ0)
187185, 186mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑖 ∈ (𝑆 ∖ {𝑠})) → (𝑓𝑖) ∈ ℕ0)
188183, 187fsumnn0cl 15702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
189179, 188syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
190189nn0ge0d 12506 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖))
191 difssd 4100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ⊆ 𝑆)
19295, 191ssfid 9212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → (𝑆 ∖ {𝑠}) ∈ Fin)
193192, 187fsumnn0cl 15702 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
194179, 193syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
195194nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℝ)
196171, 195addge01d 11766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ↔ (𝑓𝑠) ≤ ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖))))
197190, 196mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ≤ ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
198 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝑠𝑆)
199179, 198jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆))
200 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖(((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆)
201 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖(𝑓𝑠)
20295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆) → 𝑆 ∈ Fin)
20397adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆) ∧ 𝑖𝑆) → (𝑓𝑖) ∈ ℕ0)
204203nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆) ∧ 𝑖𝑆) → (𝑓𝑖) ∈ ℂ)
205 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆) → 𝑠𝑆)
206 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑠 → (𝑓𝑖) = (𝑓𝑠))
207200, 201, 202, 204, 205, 206fsumsplit1 15711 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℕ0) ∧ 𝑓:𝑆⟶ℕ0) ∧ 𝑠𝑆) → Σ𝑖𝑆 (𝑓𝑖) = ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
208199, 207syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → Σ𝑖𝑆 (𝑓𝑖) = ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
209208eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)) = Σ𝑖𝑆 (𝑓𝑖))
210197, 209breqtrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ≤ Σ𝑖𝑆 (𝑓𝑖))
211210adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → (𝑓𝑠) ≤ Σ𝑖𝑆 (𝑓𝑖))
212170, 172, 174, 175, 211ltletrd 11334 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → 𝑦 < Σ𝑖𝑆 (𝑓𝑖))
213170, 174ltnled 11321 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → (𝑦 < Σ𝑖𝑆 (𝑓𝑖) ↔ ¬ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦))
214212, 213mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → ¬ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)
215169, 214pm2.21dd 195 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) ∧ 𝑦 < (𝑓𝑠)) → ¬ 𝑦 < (𝑓𝑠))
216215pm2.01da 798 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → ¬ 𝑦 < (𝑓𝑠))
217177, 101syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → 𝑦 ∈ ℝ)
218171, 217lenltd 11320 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → ((𝑓𝑠) ≤ 𝑦 ↔ ¬ 𝑦 < (𝑓𝑠)))
219216, 218mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ≤ 𝑦)
220163, 165, 167, 168, 219elfzd 13476 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ (0...𝑦))
221220ralrimiva 3125 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → ∀𝑠𝑆 (𝑓𝑠) ∈ (0...𝑦))
222162, 221jca 511 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → (𝑓 Fn 𝑆 ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ (0...𝑦)))
223 ffnfv 7091 . . . . . . . . . . . 12 (𝑓:𝑆⟶(0...𝑦) ↔ (𝑓 Fn 𝑆 ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ (0...𝑦)))
224222, 223sylibr 234 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑓:𝑆⟶(0...𝑦))
225224ex 412 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) → 𝑓:𝑆⟶(0...𝑦)))
226225ss2abdv 4029 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ⊆ {𝑓𝑓:𝑆⟶(0...𝑦)})
227160, 226ssfid 9212 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∈ Fin)
228227adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∈ Fin)
229 fzfid 13938 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → (0...(𝑦 + 1)) ∈ Fin)
230151, 229jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → (𝑆 ∈ Fin ∧ (0...(𝑦 + 1)) ∈ Fin))
231 xpfi 9269 . . . . . . . . . . . 12 ((𝑆 ∈ Fin ∧ (0...(𝑦 + 1)) ∈ Fin) → (𝑆 × (0...(𝑦 + 1))) ∈ Fin)
232230, 231syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑆 × (0...(𝑦 + 1))) ∈ Fin)
233 pwfi 9268 . . . . . . . . . . 11 ((𝑆 × (0...(𝑦 + 1))) ∈ Fin ↔ 𝒫 (𝑆 × (0...(𝑦 + 1))) ∈ Fin)
234232, 233sylib 218 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → 𝒫 (𝑆 × (0...(𝑦 + 1))) ∈ Fin)
235 fsetsspwxp 8826 . . . . . . . . . . 11 {𝑓𝑓:𝑆⟶(0...(𝑦 + 1))} ⊆ 𝒫 (𝑆 × (0...(𝑦 + 1)))
236235a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → {𝑓𝑓:𝑆⟶(0...(𝑦 + 1))} ⊆ 𝒫 (𝑆 × (0...(𝑦 + 1))))
237234, 236ssfid 9212 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → {𝑓𝑓:𝑆⟶(0...(𝑦 + 1))} ∈ Fin)
238161ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → 𝑓 Fn 𝑆)
239 0zd 12541 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → 0 ∈ ℤ)
240 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → 𝑦 ∈ ℕ0)
241240nn0zd 12555 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → 𝑦 ∈ ℤ)
242241peano2zd 12641 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑦 + 1) ∈ ℤ)
243133ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℕ0)
244243nn0zd 12555 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℤ)
245243nn0ge0d 12506 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → 0 ≤ (𝑓𝑠))
246134ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))
247137ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑦 + 1) ∈ ℝ)
248133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → 𝑓:𝑆⟶ℕ0)
249 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → 𝑠𝑆)
250248, 249ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑓𝑠) ∈ ℕ0)
251250nn0red 12504 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑓𝑠) ∈ ℝ)
252246, 247eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
253 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑦 + 1) < (𝑓𝑠))
254133, 188syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
255254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℕ0)
257256nn0ge0d 12506 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → 0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖))
258256nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ∈ ℝ)
259251, 258addge01d 11766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (0 ≤ Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖) ↔ (𝑓𝑠) ≤ ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖))))
260257, 259mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑓𝑠) ≤ ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
261133, 207syldanl 602 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → Σ𝑖𝑆 (𝑓𝑖) = ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
262261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) = ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)))
263262eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → ((𝑓𝑠) + Σ𝑖 ∈ (𝑆 ∖ {𝑠})(𝑓𝑖)) = Σ𝑖𝑆 (𝑓𝑖))
264260, 263breqtrd 5133 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑓𝑠) ≤ Σ𝑖𝑆 (𝑓𝑖))
265247, 251, 252, 253, 264ltletrd 11334 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑦 + 1) < Σ𝑖𝑆 (𝑓𝑖))
266247, 265ltned 11310 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → (𝑦 + 1) ≠ Σ𝑖𝑆 (𝑓𝑖))
267266necomd 2980 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → Σ𝑖𝑆 (𝑓𝑖) ≠ (𝑦 + 1))
268246, 267pm2.21ddne 3009 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) ∧ (𝑦 + 1) < (𝑓𝑠)) → ¬ (𝑦 + 1) < (𝑓𝑠))
269268pm2.01da 798 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → ¬ (𝑦 + 1) < (𝑓𝑠))
270243nn0red 12504 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ ℝ)
271137adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑦 + 1) ∈ ℝ)
272270, 271lenltd 11320 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → ((𝑓𝑠) ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < (𝑓𝑠)))
273269, 272mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑓𝑠) ≤ (𝑦 + 1))
274239, 242, 244, 245, 273elfzd 13476 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) ∧ 𝑠𝑆) → (𝑓𝑠) ∈ (0...(𝑦 + 1)))
275274ralrimiva 3125 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → ∀𝑠𝑆 (𝑓𝑠) ∈ (0...(𝑦 + 1)))
276238, 275jca 511 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → (𝑓 Fn 𝑆 ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ (0...(𝑦 + 1))))
277 ffnfv 7091 . . . . . . . . . . . 12 (𝑓:𝑆⟶(0...(𝑦 + 1)) ↔ (𝑓 Fn 𝑆 ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ (0...(𝑦 + 1))))
278276, 277sylibr 234 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))) → 𝑓:𝑆⟶(0...(𝑦 + 1)))
279278ex 412 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)) → 𝑓:𝑆⟶(0...(𝑦 + 1))))
280279ss2abdv 4029 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))} ⊆ {𝑓𝑓:𝑆⟶(0...(𝑦 + 1))})
281237, 280ssfid 9212 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))} ∈ Fin)
282281adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))} ∈ Fin)
283 inab 4272 . . . . . . . . . 10 ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))}
284283a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))})
28598adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℕ0)
286285nn0zd 12555 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℤ)
287286zred 12638 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ∈ ℝ)
288125ltp1d 12113 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → 𝑦 < (𝑦 + 1))
289287, 125, 127, 128, 288lelttrd 11332 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) < (𝑦 + 1))
290287, 289ltned 11310 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → Σ𝑖𝑆 (𝑓𝑖) ≠ (𝑦 + 1))
291290neneqd 2930 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → ¬ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))
292291intnand 488 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → ¬ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))
293 nan 829 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) → ¬ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))) ↔ (((𝜑𝑦 ∈ ℕ0) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)) → ¬ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
294292, 293mpbir 231 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → ¬ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
295294alrimiv 1927 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ∀𝑓 ¬ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
296 ab0 4343 . . . . . . . . . 10 ({𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))} = ∅ ↔ ∀𝑓 ¬ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))))
297295, 296sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → {𝑓 ∣ ((𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦) ∧ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1)))} = ∅)
298284, 297eqtrd 2764 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = ∅)
299298adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = ∅)
300 hashun 14347 . . . . . . 7 (({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∈ Fin ∧ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))} ∈ Fin ∧ ({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∩ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = ∅) → (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})) = ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})))
301228, 282, 299, 300syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})) = ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})))
302 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆)))
303 simplr 768 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑦 ∈ ℕ0)
304 1nn0 12458 . . . . . . . . . . 11 1 ∈ ℕ0
305304a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 1 ∈ ℕ0)
306303, 305nn0addcld 12507 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (𝑦 + 1) ∈ ℕ0)
30735ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑆 ∈ Fin)
30863ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑆 ≠ ∅)
309 eqid 2729 . . . . . . . . 9 {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}
310306, 307, 308, 309sticksstones21 42155 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))}) = (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))
311302, 310oveq12d 7405 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})) = (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))))
312303nn0cnd 12505 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 𝑦 ∈ ℂ)
313 1cnd 11169 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → 1 ∈ ℂ)
31471ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈ ℂ)
315312, 313, 314ppncand 11573 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((𝑦 + 1) + ((♯‘𝑆) − 1)) = (𝑦 + (♯‘𝑆)))
316315oveq1d 7402 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)) = ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1)))
317316oveq2d 7403 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))))
31882ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈ ℕ0)
319303, 318nn0addcld 12507 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (𝑦 + (♯‘𝑆)) ∈ ℕ0)
320318nn0zd 12555 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘𝑆) ∈ ℤ)
321 bcpasc 14286 . . . . . . . . . 10 (((𝑦 + (♯‘𝑆)) ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℤ) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆)))
322319, 320, 321syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + ((𝑦 + (♯‘𝑆))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆)))
323317, 322eqtrd 2764 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆)))
324312, 314, 313add32d 11402 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((𝑦 + (♯‘𝑆)) + 1) = ((𝑦 + 1) + (♯‘𝑆)))
325324oveq1d 7402 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆)) + 1)C(♯‘𝑆)) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
326323, 325eqtrd 2764 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (((𝑦 + (♯‘𝑆))C(♯‘𝑆)) + (((𝑦 + 1) + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
327311, 326eqtrd 2764 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → ((♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) + (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
328301, 327eqtrd 2764 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘({𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)} ∪ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = (𝑦 + 1))})) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
329150, 328eqtrd 2764 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑦)}) = ((𝑦 + (♯‘𝑆))C(♯‘𝑆))) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ (𝑦 + 1))}) = (((𝑦 + 1) + (♯‘𝑆))C(♯‘𝑆)))
33011, 18, 25, 32, 92, 329nn0indd 12631 . . 3 ((𝜑𝑁 ∈ ℕ0) → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
3314, 330mpdan 687 . 2 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
3323, 331eqtrd 2764 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107   × cxp 5636   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267  chash 14295  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  sticksstones23  42157
  Copyright terms: Public domain W3C validator