Step | Hyp | Ref
| Expression |
1 | | fpwrelmap.3 |
. . 3
⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
2 | | fpwrelmap.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝐴 ∈ V) |
4 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑦 ∈ (𝑓‘𝑥)) |
5 | | elmapi 8530 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
6 | 5 | ffvelrnda 6904 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝒫 𝐵) |
7 | 6 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → (𝑓‘𝑥) ∈ 𝒫 𝐵) |
8 | | elelpwi 4525 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ∈ 𝒫 𝐵) → 𝑦 ∈ 𝐵) |
9 | 4, 7, 8 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑦 ∈ 𝐵) |
10 | 9 | ex 416 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵)) |
11 | 10 | alrimiv 1935 |
. . . . . 6
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵)) |
12 | | abss 3974 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵)) |
13 | | fpwrelmap.2 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
14 | 13 | ssex 5214 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐵 → {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ V) |
15 | 12, 14 | sylbir 238 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵) → {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ V) |
16 | 11, 15 | syl 17 |
. . . . 5
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ V) |
17 | 3, 16 | opabex3d 7738 |
. . . 4
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ∈ V) |
18 | 17 | adantl 485 |
. . 3
⊢
((⊤ ∧ 𝑓
∈ (𝒫 𝐵
↑m 𝐴))
→ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ∈ V) |
19 | 2 | mptex 7039 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) ∈ V |
20 | 19 | a1i 11 |
. . 3
⊢
((⊤ ∧ 𝑟
∈ 𝒫 (𝐴 ×
𝐵)) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) ∈ V) |
21 | 10 | imdistanda 575 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
22 | 21 | ssopab2dv 5432 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)}) |
23 | 22 | adantr 484 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)}) |
24 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
25 | | df-xp 5557 |
. . . . . . . . 9
⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)}) |
27 | 23, 24, 26 | 3sstr4d 3948 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑟 ⊆ (𝐴 × 𝐵)) |
28 | | velpw 4518 |
. . . . . . 7
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑟 ⊆ (𝐴 × 𝐵)) |
29 | 27, 28 | sylibr 237 |
. . . . . 6
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) |
30 | 5 | feqmptd 6780 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
31 | 30 | adantr 484 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
32 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) |
33 | | nfopab1 5123 |
. . . . . . . . . 10
⊢
Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} |
34 | 33 | nfeq2 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} |
35 | 32, 34 | nfan 1907 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
36 | | df-rab 3070 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦)} |
37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦)}) |
38 | | nfv 1922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) |
39 | | nfopab2 5124 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} |
40 | 39 | nfeq2 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} |
41 | 38, 40 | nfan 1907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
42 | | nfv 1922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
43 | 41, 42 | nfan 1907 |
. . . . . . . . . 10
⊢
Ⅎ𝑦((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) |
44 | 9 | adantllr 719 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑦 ∈ 𝐵) |
45 | | df-br 5054 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑟𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑟) |
46 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} → (〈𝑥, 𝑦〉 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) |
47 | | opabidw 5406 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))) |
48 | 46, 47 | bitrdi 290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} → (〈𝑥, 𝑦〉 ∈ 𝑟 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
49 | 45, 48 | syl5bb 286 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} → (𝑥𝑟𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
50 | 49 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑥𝑟𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
51 | | elfvdm 6749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑓‘𝑥) → 𝑥 ∈ dom 𝑓) |
52 | 51 | adantl 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑥 ∈ dom 𝑓) |
53 | 5 | fdmd 6556 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → dom 𝑓 = 𝐴) |
54 | 53 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → dom 𝑓 = 𝐴) |
55 | 52, 54 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑥 ∈ 𝐴) |
56 | 55 | ex 416 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → (𝑦 ∈ (𝑓‘𝑥) → 𝑥 ∈ 𝐴)) |
57 | 56 | pm4.71rd 566 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → (𝑦 ∈ (𝑓‘𝑥) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
58 | 57 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
59 | 50, 58 | bitr4d 285 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑥𝑟𝑦 ↔ 𝑦 ∈ (𝑓‘𝑥))) |
60 | 59 | biimpar 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑥𝑟𝑦) |
61 | 44, 60 | jca 515 |
. . . . . . . . . . . 12
⊢ ((((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦)) |
62 | 61 | ex 416 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) → (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦))) |
63 | 59 | biimpd 232 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑥𝑟𝑦 → 𝑦 ∈ (𝑓‘𝑥))) |
64 | 63 | adantld 494 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦) → 𝑦 ∈ (𝑓‘𝑥))) |
65 | 62, 64 | impbid 215 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦))) |
66 | 43, 65 | abbid 2809 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦)}) |
67 | | abid2 2879 |
. . . . . . . . . 10
⊢ {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} = (𝑓‘𝑥) |
68 | 67 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ (𝑓‘𝑥)} = (𝑓‘𝑥)) |
69 | 37, 66, 68 | 3eqtr2rd 2784 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
70 | 35, 69 | mpteq2da 5149 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
71 | 31, 70 | eqtrd 2777 |
. . . . . 6
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
72 | 29, 71 | jca 515 |
. . . . 5
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
73 | | ssrab2 3993 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ⊆ 𝐵 |
74 | 13, 73 | elpwi2 5239 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ 𝒫 𝐵 |
75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐴) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ 𝒫 𝐵) |
76 | 75 | fmpttd 6932 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}):𝐴⟶𝒫 𝐵) |
77 | 76 | adantr 484 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}):𝐴⟶𝒫 𝐵) |
78 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
79 | 78 | feq1d 6530 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑓:𝐴⟶𝒫 𝐵 ↔ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}):𝐴⟶𝒫 𝐵)) |
80 | 77, 79 | mpbird 260 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑓:𝐴⟶𝒫 𝐵) |
81 | 13 | pwex 5273 |
. . . . . . . 8
⊢ 𝒫
𝐵 ∈ V |
82 | 81, 2 | elmap 8552 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝒫 𝐵) |
83 | 80, 82 | sylibr 237 |
. . . . . 6
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) |
84 | | elpwi 4522 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) → 𝑟 ⊆ (𝐴 × 𝐵)) |
85 | 84 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ⊆ (𝐴 × 𝐵)) |
86 | | xpss 5567 |
. . . . . . . . 9
⊢ (𝐴 × 𝐵) ⊆ (V × V) |
87 | 85, 86 | sstrdi 3913 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ⊆ (V × V)) |
88 | | df-rel 5558 |
. . . . . . . 8
⊢ (Rel
𝑟 ↔ 𝑟 ⊆ (V × V)) |
89 | 87, 88 | sylibr 237 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → Rel 𝑟) |
90 | | relopabv 5691 |
. . . . . . . 8
⊢ Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} |
91 | 90 | a1i 11 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
92 | | id 22 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
93 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑟 ∈ 𝒫 (𝐴 × 𝐵) |
94 | | nfmpt1 5153 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
95 | 94 | nfeq2 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
96 | 93, 95 | nfan 1907 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
97 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑟 ∈ 𝒫 (𝐴 × 𝐵) |
98 | 42 | nfci 2887 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐴 |
99 | | nfrab1 3296 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} |
100 | 98, 99 | nfmpt 5152 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
101 | 100 | nfeq2 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
102 | 97, 101 | nfan 1907 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
103 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑟 |
104 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑦𝑟 |
105 | | brelg 30668 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ⊆ (𝐴 × 𝐵) ∧ 𝑥𝑟𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
106 | 84, 105 | sylan 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑥𝑟𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
107 | 106 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
108 | 107 | simpld 498 |
. . . . . . . . . . . . 13
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → 𝑥 ∈ 𝐴) |
109 | 107 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → 𝑦 ∈ 𝐵) |
110 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → 𝑥𝑟𝑦) |
111 | 78 | fveq1d 6719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑓‘𝑥) = ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})‘𝑥)) |
112 | 13 | rabex 5225 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ V |
113 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
114 | 113 | fvmpt2 6829 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝐴 ∧ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ V) → ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})‘𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
115 | 112, 114 | mpan2 691 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})‘𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
116 | 111, 115 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) |
117 | 116 | eleq2d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) |
118 | | rabid 3290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦)) |
119 | 117, 118 | bitrdi 290 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑓‘𝑥) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦))) |
120 | 108, 119 | syldan 594 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → (𝑦 ∈ (𝑓‘𝑥) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝑟𝑦))) |
121 | 109, 110,
120 | mpbir2and 713 |
. . . . . . . . . . . . 13
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → 𝑦 ∈ (𝑓‘𝑥)) |
122 | 108, 121 | jca 515 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥𝑟𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))) |
123 | 122 | ex 416 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑥𝑟𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
124 | 119 | simplbda 503 |
. . . . . . . . . . . 12
⊢ ((((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑥𝑟𝑦) |
125 | 124 | expl 461 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) → 𝑥𝑟𝑦)) |
126 | 123, 125 | impbid 215 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑥𝑟𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
127 | 45, 126 | bitr3id 288 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (〈𝑥, 𝑦〉 ∈ 𝑟 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)))) |
128 | 127, 47 | bitr4di 292 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (〈𝑥, 𝑦〉 ∈ 𝑟 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) |
129 | 96, 102, 103, 104, 33, 39, 128 | eqrelrd2 30675 |
. . . . . . 7
⊢ (((Rel
𝑟 ∧ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
130 | 89, 91, 92, 129 | syl21anc 838 |
. . . . . 6
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) |
131 | 83, 130 | jca 515 |
. . . . 5
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) |
132 | 72, 131 | impbii 212 |
. . . 4
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ↔ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
133 | 132 | a1i 11 |
. . 3
⊢ (⊤
→ ((𝑓 ∈
(𝒫 𝐵
↑m 𝐴) ∧
𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ↔ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})))) |
134 | 1, 18, 20, 133 | f1od 7457 |
. 2
⊢ (⊤
→ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵)) |
135 | 134 | mptru 1550 |
1
⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) |