Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones16 Structured version   Visualization version   GIF version

Theorem sticksstones16 39787
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
Hypotheses
Ref Expression
sticksstones16.1 (𝜑𝑁 ∈ ℕ0)
sticksstones16.2 (𝜑𝐾 ∈ ℕ)
sticksstones16.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones16 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐴(𝑔,𝑖)

Proof of Theorem sticksstones16
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sticksstones16.3 . . . . . 6 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
2 fveq2 6695 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑔𝑖) = (𝑔𝑗))
32cbvsumv 15225 . . . . . . . . 9 Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔𝑗)
43eqeq1i 2741 . . . . . . . 8 𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)
54anbi2i 626 . . . . . . 7 ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁))
65abbii 2801 . . . . . 6 {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
71, 6eqtri 2759 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
87a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)})
9 nfv 1922 . . . . 5 𝑔𝜑
10 sticksstones16.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
1110nncnd 11811 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
12 1cnd 10793 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1311, 12npcand 11158 . . . . . . . . 9 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1413eqcomd 2742 . . . . . . . 8 (𝜑𝐾 = ((𝐾 − 1) + 1))
1514oveq2d 7207 . . . . . . 7 (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1)))
1615feq2d 6509 . . . . . 6 (𝜑 → (𝑔:(1...𝐾)⟶ℕ0𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0))
1715sumeq1d 15230 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗))
1817eqeq1d 2738 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁))
1916, 18anbi12d 634 . . . . 5 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)))
209, 19abbid 2802 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
218, 20eqtrd 2771 . . 3 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
2221fveq2d 6699 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}))
23 sticksstones16.1 . . 3 (𝜑𝑁 ∈ ℕ0)
24 nnm1nn0 12096 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2510, 24syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
26 fveq2 6695 . . . . . . 7 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
2726cbvsumv 15225 . . . . . 6 Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖)
2827eqeq1i 2741 . . . . 5 𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)
2928anbi2i 626 . . . 4 ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁))
3029abbii 2801 . . 3 {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)}
3123, 25, 30sticksstones15 39786 . 2 (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
3222, 31eqtrd 2771 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {cab 2714  wf 6354  cfv 6358  (class class class)co 7191  1c1 10695   + caddc 10697  cmin 11027  cn 11795  0cn0 12055  ...cfz 13060  Ccbc 13833  chash 13861  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator