Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones16 Structured version   Visualization version   GIF version

Theorem sticksstones16 42163
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
Hypotheses
Ref Expression
sticksstones16.1 (𝜑𝑁 ∈ ℕ0)
sticksstones16.2 (𝜑𝐾 ∈ ℕ)
sticksstones16.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones16 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐴(𝑔,𝑖)

Proof of Theorem sticksstones16
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sticksstones16.3 . . . . . 6 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
2 fveq2 6906 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑔𝑖) = (𝑔𝑗))
32cbvsumv 15732 . . . . . . . . 9 Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔𝑗)
43eqeq1i 2742 . . . . . . . 8 𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)
54anbi2i 623 . . . . . . 7 ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁))
65abbii 2809 . . . . . 6 {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
71, 6eqtri 2765 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
87a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)})
9 nfv 1914 . . . . 5 𝑔𝜑
10 sticksstones16.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
1110nncnd 12282 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
12 1cnd 11256 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1311, 12npcand 11624 . . . . . . . . 9 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1413eqcomd 2743 . . . . . . . 8 (𝜑𝐾 = ((𝐾 − 1) + 1))
1514oveq2d 7447 . . . . . . 7 (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1)))
1615feq2d 6722 . . . . . 6 (𝜑 → (𝑔:(1...𝐾)⟶ℕ0𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0))
1715sumeq1d 15736 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗))
1817eqeq1d 2739 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁))
1916, 18anbi12d 632 . . . . 5 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)))
209, 19abbid 2810 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
218, 20eqtrd 2777 . . 3 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
2221fveq2d 6910 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}))
23 sticksstones16.1 . . 3 (𝜑𝑁 ∈ ℕ0)
24 nnm1nn0 12567 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2510, 24syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
26 fveq2 6906 . . . . . . 7 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
2726cbvsumv 15732 . . . . . 6 Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖)
2827eqeq1i 2742 . . . . 5 𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)
2928anbi2i 623 . . . 4 ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁))
3029abbii 2809 . . 3 {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)}
3123, 25, 30sticksstones15 42162 . 2 (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
3222, 31eqtrd 2777 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2714  wf 6557  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547  Ccbc 14341  chash 14369  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sticksstones20  42167
  Copyright terms: Public domain W3C validator