Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones16 Structured version   Visualization version   GIF version

Theorem sticksstones16 42145
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
Hypotheses
Ref Expression
sticksstones16.1 (𝜑𝑁 ∈ ℕ0)
sticksstones16.2 (𝜑𝐾 ∈ ℕ)
sticksstones16.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones16 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐴(𝑔,𝑖)

Proof of Theorem sticksstones16
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sticksstones16.3 . . . . . 6 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
2 fveq2 6822 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑔𝑖) = (𝑔𝑗))
32cbvsumv 15603 . . . . . . . . 9 Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔𝑗)
43eqeq1i 2734 . . . . . . . 8 𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)
54anbi2i 623 . . . . . . 7 ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁))
65abbii 2796 . . . . . 6 {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
71, 6eqtri 2752 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
87a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)})
9 nfv 1914 . . . . 5 𝑔𝜑
10 sticksstones16.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
1110nncnd 12144 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
12 1cnd 11110 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1311, 12npcand 11479 . . . . . . . . 9 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1413eqcomd 2735 . . . . . . . 8 (𝜑𝐾 = ((𝐾 − 1) + 1))
1514oveq2d 7365 . . . . . . 7 (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1)))
1615feq2d 6636 . . . . . 6 (𝜑 → (𝑔:(1...𝐾)⟶ℕ0𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0))
1715sumeq1d 15607 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗))
1817eqeq1d 2731 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁))
1916, 18anbi12d 632 . . . . 5 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)))
209, 19abbid 2797 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
218, 20eqtrd 2764 . . 3 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
2221fveq2d 6826 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}))
23 sticksstones16.1 . . 3 (𝜑𝑁 ∈ ℕ0)
24 nnm1nn0 12425 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2510, 24syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
26 fveq2 6822 . . . . . . 7 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
2726cbvsumv 15603 . . . . . 6 Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖)
2827eqeq1i 2734 . . . . 5 𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)
2928anbi2i 623 . . . 4 ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁))
3029abbii 2796 . . 3 {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)}
3123, 25, 30sticksstones15 42144 . 2 (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
3222, 31eqtrd 2764 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wf 6478  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012  cmin 11347  cn 12128  0cn0 12384  ...cfz 13410  Ccbc 14209  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones20  42149
  Copyright terms: Public domain W3C validator