![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones16 | Structured version Visualization version GIF version |
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones16.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones16.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
sticksstones16.3 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones16 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones16.3 | . . . . . 6 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} | |
2 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
3 | 2 | cbvsumv 15729 | . . . . . . . . 9 ⊢ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) |
4 | 3 | eqeq1i 2740 | . . . . . . . 8 ⊢ (Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) |
5 | 4 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)) |
6 | 5 | abbii 2807 | . . . . . 6 ⊢ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
7 | 1, 6 | eqtri 2763 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)}) |
9 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑔𝜑 | |
10 | sticksstones16.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
11 | 10 | nncnd 12280 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
12 | 1cnd 11254 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
13 | 11, 12 | npcand 11622 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
14 | 13 | eqcomd 2741 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 = ((𝐾 − 1) + 1)) |
15 | 14 | oveq2d 7447 | . . . . . . 7 ⊢ (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1))) |
16 | 15 | feq2d 6723 | . . . . . 6 ⊢ (𝜑 → (𝑔:(1...𝐾)⟶ℕ0 ↔ 𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0)) |
17 | 15 | sumeq1d 15733 | . . . . . . 7 ⊢ (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗)) |
18 | 17 | eqeq1d 2737 | . . . . . 6 ⊢ (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)) |
19 | 16, 18 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁))) |
20 | 9, 19 | abbid 2808 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
21 | 8, 20 | eqtrd 2775 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
22 | 21 | fveq2d 6911 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)})) |
23 | sticksstones16.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
24 | nnm1nn0 12565 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
25 | 10, 24 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
26 | fveq2 6907 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) | |
27 | 26 | cbvsumv 15729 | . . . . . 6 ⊢ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) |
28 | 27 | eqeq1i 2740 | . . . . 5 ⊢ (Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁) |
29 | 28 | anbi2i 623 | . . . 4 ⊢ ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)) |
30 | 29 | abbii 2807 | . . 3 ⊢ {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)} |
31 | 23, 25, 30 | sticksstones15 42143 | . 2 ⊢ (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
32 | 22, 31 | eqtrd 2775 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ...cfz 13544 Ccbc 14338 ♯chash 14366 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: sticksstones20 42148 |
Copyright terms: Public domain | W3C validator |