| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones16 | Structured version Visualization version GIF version | ||
| Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones16.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones16.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| sticksstones16.3 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} |
| Ref | Expression |
|---|---|
| sticksstones16 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones16.3 | . . . . . 6 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} | |
| 2 | fveq2 6906 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
| 3 | 2 | cbvsumv 15732 | . . . . . . . . 9 ⊢ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) |
| 4 | 3 | eqeq1i 2742 | . . . . . . . 8 ⊢ (Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) |
| 5 | 4 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)) |
| 6 | 5 | abbii 2809 | . . . . . 6 ⊢ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
| 7 | 1, 6 | eqtri 2765 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)}) |
| 9 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑔𝜑 | |
| 10 | sticksstones16.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 11 | 10 | nncnd 12282 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 12 | 1cnd 11256 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 13 | 11, 12 | npcand 11624 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 14 | 13 | eqcomd 2743 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 = ((𝐾 − 1) + 1)) |
| 15 | 14 | oveq2d 7447 | . . . . . . 7 ⊢ (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1))) |
| 16 | 15 | feq2d 6722 | . . . . . 6 ⊢ (𝜑 → (𝑔:(1...𝐾)⟶ℕ0 ↔ 𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0)) |
| 17 | 15 | sumeq1d 15736 | . . . . . . 7 ⊢ (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗)) |
| 18 | 17 | eqeq1d 2739 | . . . . . 6 ⊢ (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)) |
| 19 | 16, 18 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁))) |
| 20 | 9, 19 | abbid 2810 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
| 21 | 8, 20 | eqtrd 2777 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
| 22 | 21 | fveq2d 6910 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)})) |
| 23 | sticksstones16.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 24 | nnm1nn0 12567 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
| 25 | 10, 24 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
| 26 | fveq2 6906 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) | |
| 27 | 26 | cbvsumv 15732 | . . . . . 6 ⊢ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) |
| 28 | 27 | eqeq1i 2742 | . . . . 5 ⊢ (Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁) |
| 29 | 28 | anbi2i 623 | . . . 4 ⊢ ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)) |
| 30 | 29 | abbii 2809 | . . 3 ⊢ {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)} |
| 31 | 23, 25, 30 | sticksstones15 42162 | . 2 ⊢ (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
| 32 | 22, 31 | eqtrd 2777 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 1c1 11156 + caddc 11158 − cmin 11492 ℕcn 12266 ℕ0cn0 12526 ...cfz 13547 Ccbc 14341 ♯chash 14369 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: sticksstones20 42167 |
| Copyright terms: Public domain | W3C validator |