![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones16 | Structured version Visualization version GIF version |
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones16.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones16.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
sticksstones16.3 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones16 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones16.3 | . . . . . 6 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} | |
2 | fveq2 6896 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
3 | 2 | cbvsumv 15678 | . . . . . . . . 9 ⊢ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) |
4 | 3 | eqeq1i 2730 | . . . . . . . 8 ⊢ (Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) |
5 | 4 | anbi2i 621 | . . . . . . 7 ⊢ ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)) |
6 | 5 | abbii 2795 | . . . . . 6 ⊢ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
7 | 1, 6 | eqtri 2753 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)}) |
9 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑔𝜑 | |
10 | sticksstones16.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
11 | 10 | nncnd 12261 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
12 | 1cnd 11241 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
13 | 11, 12 | npcand 11607 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
14 | 13 | eqcomd 2731 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 = ((𝐾 − 1) + 1)) |
15 | 14 | oveq2d 7435 | . . . . . . 7 ⊢ (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1))) |
16 | 15 | feq2d 6709 | . . . . . 6 ⊢ (𝜑 → (𝑔:(1...𝐾)⟶ℕ0 ↔ 𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0)) |
17 | 15 | sumeq1d 15683 | . . . . . . 7 ⊢ (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗)) |
18 | 17 | eqeq1d 2727 | . . . . . 6 ⊢ (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)) |
19 | 16, 18 | anbi12d 630 | . . . . 5 ⊢ (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁))) |
20 | 9, 19 | abbid 2796 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
21 | 8, 20 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
22 | 21 | fveq2d 6900 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)})) |
23 | sticksstones16.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
24 | nnm1nn0 12546 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
25 | 10, 24 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
26 | fveq2 6896 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) | |
27 | 26 | cbvsumv 15678 | . . . . . 6 ⊢ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) |
28 | 27 | eqeq1i 2730 | . . . . 5 ⊢ (Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁) |
29 | 28 | anbi2i 621 | . . . 4 ⊢ ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)) |
30 | 29 | abbii 2795 | . . 3 ⊢ {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)} |
31 | 23, 25, 30 | sticksstones15 41764 | . 2 ⊢ (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
32 | 22, 31 | eqtrd 2765 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 1c1 11141 + caddc 11143 − cmin 11476 ℕcn 12245 ℕ0cn0 12505 ...cfz 13519 Ccbc 14297 ♯chash 14325 Σcsu 15668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-ico 13365 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 |
This theorem is referenced by: sticksstones20 41769 |
Copyright terms: Public domain | W3C validator |