Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones16 Structured version   Visualization version   GIF version

Theorem sticksstones16 40046
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
Hypotheses
Ref Expression
sticksstones16.1 (𝜑𝑁 ∈ ℕ0)
sticksstones16.2 (𝜑𝐾 ∈ ℕ)
sticksstones16.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones16 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐴(𝑔,𝑖)

Proof of Theorem sticksstones16
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sticksstones16.3 . . . . . 6 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
2 fveq2 6756 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑔𝑖) = (𝑔𝑗))
32cbvsumv 15336 . . . . . . . . 9 Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔𝑗)
43eqeq1i 2743 . . . . . . . 8 𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)
54anbi2i 622 . . . . . . 7 ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁))
65abbii 2809 . . . . . 6 {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
71, 6eqtri 2766 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
87a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)})
9 nfv 1918 . . . . 5 𝑔𝜑
10 sticksstones16.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
1110nncnd 11919 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
12 1cnd 10901 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1311, 12npcand 11266 . . . . . . . . 9 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1413eqcomd 2744 . . . . . . . 8 (𝜑𝐾 = ((𝐾 − 1) + 1))
1514oveq2d 7271 . . . . . . 7 (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1)))
1615feq2d 6570 . . . . . 6 (𝜑 → (𝑔:(1...𝐾)⟶ℕ0𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0))
1715sumeq1d 15341 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗))
1817eqeq1d 2740 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁))
1916, 18anbi12d 630 . . . . 5 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)))
209, 19abbid 2810 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
218, 20eqtrd 2778 . . 3 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
2221fveq2d 6760 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}))
23 sticksstones16.1 . . 3 (𝜑𝑁 ∈ ℕ0)
24 nnm1nn0 12204 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2510, 24syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
26 fveq2 6756 . . . . . . 7 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
2726cbvsumv 15336 . . . . . 6 Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖)
2827eqeq1i 2743 . . . . 5 𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)
2928anbi2i 622 . . . 4 ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁))
3029abbii 2809 . . 3 {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)}
3123, 25, 30sticksstones15 40045 . 2 (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
3222, 31eqtrd 2778 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wf 6414  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cmin 11135  cn 11903  0cn0 12163  ...cfz 13168  Ccbc 13944  chash 13972  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  sticksstones20  40050
  Copyright terms: Public domain W3C validator