Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones16 | Structured version Visualization version GIF version |
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones16.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones16.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
sticksstones16.3 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} |
Ref | Expression |
---|---|
sticksstones16 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones16.3 | . . . . . 6 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} | |
2 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
3 | 2 | cbvsumv 15336 | . . . . . . . . 9 ⊢ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) |
4 | 3 | eqeq1i 2743 | . . . . . . . 8 ⊢ (Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) |
5 | 4 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)) |
6 | 5 | abbii 2809 | . . . . . 6 ⊢ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
7 | 1, 6 | eqtri 2766 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)}) |
9 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑔𝜑 | |
10 | sticksstones16.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
11 | 10 | nncnd 11919 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
12 | 1cnd 10901 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
13 | 11, 12 | npcand 11266 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
14 | 13 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 = ((𝐾 − 1) + 1)) |
15 | 14 | oveq2d 7271 | . . . . . . 7 ⊢ (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1))) |
16 | 15 | feq2d 6570 | . . . . . 6 ⊢ (𝜑 → (𝑔:(1...𝐾)⟶ℕ0 ↔ 𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0)) |
17 | 15 | sumeq1d 15341 | . . . . . . 7 ⊢ (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗)) |
18 | 17 | eqeq1d 2740 | . . . . . 6 ⊢ (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)) |
19 | 16, 18 | anbi12d 630 | . . . . 5 ⊢ (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁))) |
20 | 9, 19 | abbid 2810 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
21 | 8, 20 | eqtrd 2778 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) |
22 | 21 | fveq2d 6760 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)})) |
23 | sticksstones16.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
24 | nnm1nn0 12204 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
25 | 10, 24 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
26 | fveq2 6756 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) | |
27 | 26 | cbvsumv 15336 | . . . . . 6 ⊢ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) |
28 | 27 | eqeq1i 2743 | . . . . 5 ⊢ (Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁) |
29 | 28 | anbi2i 622 | . . . 4 ⊢ ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)) |
30 | 29 | abbii 2809 | . . 3 ⊢ {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑖) = 𝑁)} |
31 | 23, 25, 30 | sticksstones15 40045 | . 2 ⊢ (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔‘𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
32 | 22, 31 | eqtrd 2778 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ...cfz 13168 Ccbc 13944 ♯chash 13972 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: sticksstones20 40050 |
Copyright terms: Public domain | W3C validator |