Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones16 Structured version   Visualization version   GIF version

Theorem sticksstones16 42119
Description: Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
Hypotheses
Ref Expression
sticksstones16.1 (𝜑𝑁 ∈ ℕ0)
sticksstones16.2 (𝜑𝐾 ∈ ℕ)
sticksstones16.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
Assertion
Ref Expression
sticksstones16 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐴(𝑔,𝑖)

Proof of Theorem sticksstones16
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sticksstones16.3 . . . . . 6 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
2 fveq2 6920 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑔𝑖) = (𝑔𝑗))
32cbvsumv 15744 . . . . . . . . 9 Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑗 ∈ (1...𝐾)(𝑔𝑗)
43eqeq1i 2745 . . . . . . . 8 𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)
54anbi2i 622 . . . . . . 7 ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁))
65abbii 2812 . . . . . 6 {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
71, 6eqtri 2768 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)}
87a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)})
9 nfv 1913 . . . . 5 𝑔𝜑
10 sticksstones16.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
1110nncnd 12309 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
12 1cnd 11285 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1311, 12npcand 11651 . . . . . . . . 9 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1413eqcomd 2746 . . . . . . . 8 (𝜑𝐾 = ((𝐾 − 1) + 1))
1514oveq2d 7464 . . . . . . 7 (𝜑 → (1...𝐾) = (1...((𝐾 − 1) + 1)))
1615feq2d 6733 . . . . . 6 (𝜑 → (𝑔:(1...𝐾)⟶ℕ0𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0))
1715sumeq1d 15748 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗))
1817eqeq1d 2742 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁 ↔ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁))
1916, 18anbi12d 631 . . . . 5 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)))
209, 19abbid 2813 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑗 ∈ (1...𝐾)(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
218, 20eqtrd 2780 . . 3 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)})
2221fveq2d 6924 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}))
23 sticksstones16.1 . . 3 (𝜑𝑁 ∈ ℕ0)
24 nnm1nn0 12594 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2510, 24syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
26 fveq2 6920 . . . . . . 7 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
2726cbvsumv 15744 . . . . . 6 Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖)
2827eqeq1i 2745 . . . . 5 𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁 ↔ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)
2928anbi2i 622 . . . 4 ((𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁) ↔ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁))
3029abbii 2812 . . 3 {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)} = {𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑖) = 𝑁)}
3123, 25, 30sticksstones15 42118 . 2 (𝜑 → (♯‘{𝑔 ∣ (𝑔:(1...((𝐾 − 1) + 1))⟶ℕ0 ∧ Σ𝑗 ∈ (1...((𝐾 − 1) + 1))(𝑔𝑗) = 𝑁)}) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
3222, 31eqtrd 2780 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wf 6569  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  Ccbc 14351  chash 14379  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  sticksstones20  42123
  Copyright terms: Public domain W3C validator