![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq2d | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2899). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
abeq2d.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Ref | Expression |
---|---|
abeq2d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
2 | 1 | eleq2d 2853 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
3 | abid 2764 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
4 | 2, 3 | syl6bb 279 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 ∈ wcel 2051 {cab 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-12 2107 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 |
This theorem is referenced by: abeq2i 2902 fvelimab 6572 mapsnend 8391 nosupbnd2 32777 fvineqsneu 34173 fvineqsneq 34174 ispridlc 34830 ac6s6 34934 dib1dim 37786 prprspr2 43083 |
Copyright terms: Public domain | W3C validator |