MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2d Structured version   Visualization version   GIF version

Theorem abeq2d 2874
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2872). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeq2d.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeq2d.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2824 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2719 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3bitrdi 287 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  abeq2i  2875  fvelimab  6841  mapsnend  8826  nosupbnd2  33919  noinfbnd2  33934  fvineqsneu  35582  fvineqsneq  35583  ispridlc  36228  ac6s6  36330  dib1dim  39179  prprspr2  44970
  Copyright terms: Public domain W3C validator