MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2d Structured version   Visualization version   GIF version

Theorem abeq2d 2901
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2899). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeq2d.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeq2d.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2853 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2764 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3syl6bb 279 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1508  wcel 2051  {cab 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-12 2107  ax-ext 2752
This theorem depends on definitions:  df-bi 199  df-an 388  df-ex 1744  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848
This theorem is referenced by:  abeq2i  2902  fvelimab  6572  mapsnend  8391  nosupbnd2  32777  fvineqsneu  34173  fvineqsneq  34174  ispridlc  34830  ac6s6  34934  dib1dim  37786  prprspr2  43083
  Copyright terms: Public domain W3C validator