MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2d Structured version   Visualization version   GIF version

Theorem abeq2d 2873
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2871). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeq2d.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeq2d.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2824 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2719 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3bitrdi 286 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  abeq2i  2874  fvelimab  6823  mapsnend  8780  nosupbnd2  33846  noinfbnd2  33861  fvineqsneu  35509  fvineqsneq  35510  ispridlc  36155  ac6s6  36257  dib1dim  39106  prprspr2  44858
  Copyright terms: Public domain W3C validator