Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq2d | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2871). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
abeq2d.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Ref | Expression |
---|---|
abeq2d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
3 | abid 2719 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
4 | 2, 3 | bitrdi 286 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: abeq2i 2874 fvelimab 6823 mapsnend 8780 nosupbnd2 33846 noinfbnd2 33861 fvineqsneu 35509 fvineqsneq 35510 ispridlc 36155 ac6s6 36257 dib1dim 39106 prprspr2 44858 |
Copyright terms: Public domain | W3C validator |