Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprspr2 Structured version   Visualization version   GIF version

Theorem prprspr2 45680
Description: The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprspr2 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Distinct variable group:   𝑉,𝑝

Proof of Theorem prprspr2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprval 45641 . . . . . . 7 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
21abeq2d 2878 . . . . . 6 (𝑉 ∈ V → (𝑝 ∈ (Pairs‘𝑉) ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
32anbi1d 630 . . . . 5 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2)))
4 r19.41vv 3214 . . . . . 6 (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2))
5 fveqeq2 6849 . . . . . . . . . . 11 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
6 hashprg 14292 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
76el2v 3452 . . . . . . . . . . 11 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
85, 7bitr4di 288 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
98pm5.32i 575 . . . . . . . . 9 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑝 = {𝑎, 𝑏} ∧ 𝑎𝑏))
109biancomi 463 . . . . . . . 8 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏}))
1110a1i 11 . . . . . . 7 ((𝑉 ∈ V ∧ (𝑎𝑉𝑏𝑉)) → ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏})))
12112rexbidva 3210 . . . . . 6 (𝑉 ∈ V → (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
134, 12bitr3id 284 . . . . 5 (𝑉 ∈ V → ((∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
143, 13bitrd 278 . . . 4 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
1514abbidv 2805 . . 3 (𝑉 ∈ V → {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
16 df-rab 3407 . . . 4 {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)}
1716a1i 11 . . 3 (𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)})
18 prprval 45676 . . 3 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
1915, 17, 183eqtr4rd 2787 . 2 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
20 rab0 4341 . . . 4 {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅
2120a1i 11 . . 3 𝑉 ∈ V → {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅)
22 fvprc 6832 . . . 4 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
2322rabeqdv 3421 . . 3 𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2})
24 fvprc 6832 . . 3 𝑉 ∈ V → (Pairsproper𝑉) = ∅)
2521, 23, 243eqtr4rd 2787 . 2 𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
2619, 25pm2.61i 182 1 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2942  wrex 3072  {crab 3406  Vcvv 3444  c0 4281  {cpr 4587  cfv 6494  2c2 12205  chash 14227  Pairscspr 45639  Pairspropercprpr 45674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-oadd 8413  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-dju 9834  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-n0 12411  df-z 12497  df-uz 12761  df-fz 13422  df-hash 14228  df-spr 45640  df-prpr 45675
This theorem is referenced by:  prprsprreu  45681
  Copyright terms: Public domain W3C validator