![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprspr2 | Structured version Visualization version GIF version |
Description: The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprspr2 | ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 46147 | . . . . . . 7 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | eqabrd 2877 | . . . . . 6 ⊢ (𝑉 ∈ V → (𝑝 ∈ (Pairs‘𝑉) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2))) |
4 | r19.41vv 3225 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2)) | |
5 | fveqeq2 6901 | . . . . . . . . . . 11 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
6 | hashprg 14355 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
7 | 6 | el2v 3483 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
8 | 5, 7 | bitr4di 289 | . . . . . . . . . 10 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎 ≠ 𝑏)) |
9 | 8 | pm5.32i 576 | . . . . . . . . 9 ⊢ ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑝 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
10 | 9 | biancomi 464 | . . . . . . . 8 ⊢ ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})) |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
12 | 11 | 2rexbidva 3218 | . . . . . 6 ⊢ (𝑉 ∈ V → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
13 | 4, 12 | bitr3id 285 | . . . . 5 ⊢ (𝑉 ∈ V → ((∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
14 | 3, 13 | bitrd 279 | . . . 4 ⊢ (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
15 | 14 | abbidv 2802 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
16 | df-rab 3434 | . . . 4 ⊢ {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)}) |
18 | prprval 46182 | . . 3 ⊢ (𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
19 | 15, 17, 18 | 3eqtr4rd 2784 | . 2 ⊢ (𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}) |
20 | rab0 4383 | . . . 4 ⊢ {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅ | |
21 | 20 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅) |
22 | fvprc 6884 | . . . 4 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
23 | 22 | rabeqdv 3448 | . . 3 ⊢ (¬ 𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2}) |
24 | fvprc 6884 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairsproper‘𝑉) = ∅) | |
25 | 21, 23, 24 | 3eqtr4rd 2784 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}) |
26 | 19, 25 | pm2.61i 182 | 1 ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ≠ wne 2941 ∃wrex 3071 {crab 3433 Vcvv 3475 ∅c0 4323 {cpr 4631 ‘cfv 6544 2c2 12267 ♯chash 14290 Pairscspr 46145 Pairspropercprpr 46180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 df-spr 46146 df-prpr 46181 |
This theorem is referenced by: prprsprreu 46187 |
Copyright terms: Public domain | W3C validator |