Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprspr2 Structured version   Visualization version   GIF version

Theorem prprspr2 47392
Description: The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprspr2 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Distinct variable group:   𝑉,𝑝

Proof of Theorem prprspr2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprval 47353 . . . . . . 7 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
21eqabrd 2887 . . . . . 6 (𝑉 ∈ V → (𝑝 ∈ (Pairs‘𝑉) ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
32anbi1d 630 . . . . 5 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2)))
4 r19.41vv 3233 . . . . . 6 (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2))
5 fveqeq2 6929 . . . . . . . . . . 11 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
6 hashprg 14444 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
76el2v 3495 . . . . . . . . . . 11 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
85, 7bitr4di 289 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
98pm5.32i 574 . . . . . . . . 9 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑝 = {𝑎, 𝑏} ∧ 𝑎𝑏))
109biancomi 462 . . . . . . . 8 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏}))
1110a1i 11 . . . . . . 7 ((𝑉 ∈ V ∧ (𝑎𝑉𝑏𝑉)) → ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏})))
12112rexbidva 3226 . . . . . 6 (𝑉 ∈ V → (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
134, 12bitr3id 285 . . . . 5 (𝑉 ∈ V → ((∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
143, 13bitrd 279 . . . 4 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
1514abbidv 2811 . . 3 (𝑉 ∈ V → {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
16 df-rab 3444 . . . 4 {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)}
1716a1i 11 . . 3 (𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)})
18 prprval 47388 . . 3 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
1915, 17, 183eqtr4rd 2791 . 2 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
20 rab0 4409 . . . 4 {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅
2120a1i 11 . . 3 𝑉 ∈ V → {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅)
22 fvprc 6912 . . . 4 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
2322rabeqdv 3459 . . 3 𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2})
24 fvprc 6912 . . 3 𝑉 ∈ V → (Pairsproper𝑉) = ∅)
2521, 23, 243eqtr4rd 2791 . 2 𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
2619, 25pm2.61i 182 1 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  {cpr 4650  cfv 6573  2c2 12348  chash 14379  Pairscspr 47351  Pairspropercprpr 47386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-spr 47352  df-prpr 47387
This theorem is referenced by:  prprsprreu  47393
  Copyright terms: Public domain W3C validator