Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprspr2 Structured version   Visualization version   GIF version

Theorem prprspr2 47523
Description: The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprspr2 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Distinct variable group:   𝑉,𝑝

Proof of Theorem prprspr2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprval 47484 . . . . . . 7 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
21eqabrd 2871 . . . . . 6 (𝑉 ∈ V → (𝑝 ∈ (Pairs‘𝑉) ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
32anbi1d 631 . . . . 5 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2)))
4 r19.41vv 3208 . . . . . 6 (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2))
5 fveqeq2 6870 . . . . . . . . . . 11 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
6 hashprg 14367 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
76el2v 3457 . . . . . . . . . . 11 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
85, 7bitr4di 289 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
98pm5.32i 574 . . . . . . . . 9 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑝 = {𝑎, 𝑏} ∧ 𝑎𝑏))
109biancomi 462 . . . . . . . 8 ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏}))
1110a1i 11 . . . . . . 7 ((𝑉 ∈ V ∧ (𝑎𝑉𝑏𝑉)) → ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎𝑏𝑝 = {𝑎, 𝑏})))
12112rexbidva 3201 . . . . . 6 (𝑉 ∈ V → (∃𝑎𝑉𝑏𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
134, 12bitr3id 285 . . . . 5 (𝑉 ∈ V → ((∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
143, 13bitrd 279 . . . 4 (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
1514abbidv 2796 . . 3 (𝑉 ∈ V → {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
16 df-rab 3409 . . . 4 {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)}
1716a1i 11 . . 3 (𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)})
18 prprval 47519 . . 3 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
1915, 17, 183eqtr4rd 2776 . 2 (𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
20 rab0 4352 . . . 4 {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅
2120a1i 11 . . 3 𝑉 ∈ V → {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅)
22 fvprc 6853 . . . 4 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
2322rabeqdv 3424 . . 3 𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2})
24 fvprc 6853 . . 3 𝑉 ∈ V → (Pairsproper𝑉) = ∅)
2521, 23, 243eqtr4rd 2776 . 2 𝑉 ∈ V → (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2})
2619, 25pm2.61i 182 1 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  c0 4299  {cpr 4594  cfv 6514  2c2 12248  chash 14302  Pairscspr 47482  Pairspropercprpr 47517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-spr 47483  df-prpr 47518
This theorem is referenced by:  prprsprreu  47524
  Copyright terms: Public domain W3C validator