![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprspr2 | Structured version Visualization version GIF version |
Description: The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprspr2 | ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 46866 | . . . . . . 7 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | eqabrd 2872 | . . . . . 6 ⊢ (𝑉 ∈ V → (𝑝 ∈ (Pairs‘𝑉) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
3 | 2 | anbi1d 629 | . . . . 5 ⊢ (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2))) |
4 | r19.41vv 3222 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2)) | |
5 | fveqeq2 6911 | . . . . . . . . . . 11 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
6 | hashprg 14396 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
7 | 6 | el2v 3481 | . . . . . . . . . . 11 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
8 | 5, 7 | bitr4di 288 | . . . . . . . . . 10 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎 ≠ 𝑏)) |
9 | 8 | pm5.32i 573 | . . . . . . . . 9 ⊢ ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑝 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
10 | 9 | biancomi 461 | . . . . . . . 8 ⊢ ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})) |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
12 | 11 | 2rexbidva 3215 | . . . . . 6 ⊢ (𝑉 ∈ V → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
13 | 4, 12 | bitr3id 284 | . . . . 5 ⊢ (𝑉 ∈ V → ((∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
14 | 3, 13 | bitrd 278 | . . . 4 ⊢ (𝑉 ∈ V → ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
15 | 14 | abbidv 2797 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
16 | df-rab 3431 | . . . 4 ⊢ {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)} | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∣ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)}) |
18 | prprval 46901 | . . 3 ⊢ (𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
19 | 15, 17, 18 | 3eqtr4rd 2779 | . 2 ⊢ (𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}) |
20 | rab0 4386 | . . . 4 ⊢ {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅ | |
21 | 20 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2} = ∅) |
22 | fvprc 6894 | . . . 4 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
23 | 22 | rabeqdv 3446 | . . 3 ⊢ (¬ 𝑉 ∈ V → {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ ∅ ∣ (♯‘𝑝) = 2}) |
24 | fvprc 6894 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairsproper‘𝑉) = ∅) | |
25 | 21, 23, 24 | 3eqtr4rd 2779 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}) |
26 | 19, 25 | pm2.61i 182 | 1 ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ≠ wne 2937 ∃wrex 3067 {crab 3430 Vcvv 3473 ∅c0 4326 {cpr 4634 ‘cfv 6553 2c2 12307 ♯chash 14331 Pairscspr 46864 Pairspropercprpr 46899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-oadd 8499 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-dju 9934 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-hash 14332 df-spr 46865 df-prpr 46900 |
This theorem is referenced by: prprsprreu 46906 |
Copyright terms: Public domain | W3C validator |