Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 41159
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐵 = (Base‘𝐾)
dib1dim.h 𝐻 = (LHyp‘𝐾)
dib1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dib1dim.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Distinct variable groups:   𝐵,   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   ,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   ,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,𝑠)   𝑅(𝑔,)   𝐸()   𝐹()   𝐻(𝑔,)   𝐼(𝑔,,𝑠)   𝐾(𝑔)   𝑂()   𝑊(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib1dim.b . . . . 5 𝐵 = (Base‘𝐾)
3 dib1dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dib1dim.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
7 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 40178 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dib1dim.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
10 eqid 2729 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
122, 7, 3, 4, 9, 10, 11dibval2 41138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ 𝐵 ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
131, 6, 8, 12syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
14 relxp 5656 . . . 4 Rel ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂})
15 opelxp 5674 . . . . 5 (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
173, 4, 5, 16, 10dia1dim 41055 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) = {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)})
1817eqabrd 2870 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ↔ ∃𝑠𝐸 𝑓 = (𝑠𝐹)))
1918anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂})))
203, 4, 16tendocl 40761 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
21203expa 1118 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
2221an32s 652 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑠𝐹) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 40784 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2423ad2antrr 726 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → 𝑂𝐸)
2522, 24jca 511 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇𝑂𝐸))
26 eleq1 2816 . . . . . . . . . . 11 (𝑓 = (𝑠𝐹) → (𝑓𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
27 eleq1 2816 . . . . . . . . . . 11 (𝑡 = 𝑂 → (𝑡𝐸𝑂𝐸))
2826, 27bi2anan9 638 . . . . . . . . . 10 ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → ((𝑓𝑇𝑡𝐸) ↔ ((𝑠𝐹) ∈ 𝑇𝑂𝐸)))
2925, 28syl5ibrcom 247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3029rexlimdva 3134 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3130pm4.71rd 562 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
32 velsn 4605 . . . . . . . . 9 (𝑡 ∈ {𝑂} ↔ 𝑡 = 𝑂)
3332anbi2i 623 . . . . . . . 8 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
34 r19.41v 3167 . . . . . . . 8 (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
3533, 34bitr4i 278 . . . . . . 7 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
36 df-3an 1088 . . . . . . 7 ((𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
3731, 35, 363bitr4g 314 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3819, 37bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3915, 38bitrid 283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
4014, 39opabbi2dv 5813 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
4113, 40eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
42 eqeq1 2733 . . . . 5 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩))
43 vex 3451 . . . . . 6 𝑓 ∈ V
44 vex 3451 . . . . . 6 𝑡 ∈ V
4543, 44opth 5436 . . . . 5 (⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
4642, 45bitrdi 287 . . . 4 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4746rexbidv 3157 . . 3 (𝑔 = ⟨𝑓, 𝑡⟩ → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4847rabxp 5686 . 2 {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩} = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))}
4941, 48eqtr4di 2782 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  {csn 4589  cop 4595   class class class wbr 5107  {copab 5169  cmpt 5188   I cid 5532   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  lecple 17227  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  TEndoctendo 40746  DIsoAcdia 41022  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-disoa 41023  df-dib 41133
This theorem is referenced by:  dib1dim2  41162
  Copyright terms: Public domain W3C validator