Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 41147
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐵 = (Base‘𝐾)
dib1dim.h 𝐻 = (LHyp‘𝐾)
dib1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dib1dim.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Distinct variable groups:   𝐵,   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   ,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   ,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,𝑠)   𝑅(𝑔,)   𝐸()   𝐹()   𝐻(𝑔,)   𝐼(𝑔,,𝑠)   𝐾(𝑔)   𝑂()   𝑊(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib1dim.b . . . . 5 𝐵 = (Base‘𝐾)
3 dib1dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dib1dim.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 40146 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
7 eqid 2734 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 40166 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dib1dim.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
10 eqid 2734 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
122, 7, 3, 4, 9, 10, 11dibval2 41126 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ 𝐵 ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
131, 6, 8, 12syl12anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
14 relxp 5706 . . . 4 Rel ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂})
15 opelxp 5724 . . . . 5 (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
173, 4, 5, 16, 10dia1dim 41043 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) = {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)})
1817eqabrd 2881 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ↔ ∃𝑠𝐸 𝑓 = (𝑠𝐹)))
1918anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂})))
203, 4, 16tendocl 40749 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
21203expa 1117 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
2221an32s 652 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑠𝐹) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 40772 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2423ad2antrr 726 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → 𝑂𝐸)
2522, 24jca 511 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇𝑂𝐸))
26 eleq1 2826 . . . . . . . . . . 11 (𝑓 = (𝑠𝐹) → (𝑓𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
27 eleq1 2826 . . . . . . . . . . 11 (𝑡 = 𝑂 → (𝑡𝐸𝑂𝐸))
2826, 27bi2anan9 638 . . . . . . . . . 10 ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → ((𝑓𝑇𝑡𝐸) ↔ ((𝑠𝐹) ∈ 𝑇𝑂𝐸)))
2925, 28syl5ibrcom 247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3029rexlimdva 3152 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3130pm4.71rd 562 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
32 velsn 4646 . . . . . . . . 9 (𝑡 ∈ {𝑂} ↔ 𝑡 = 𝑂)
3332anbi2i 623 . . . . . . . 8 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
34 r19.41v 3186 . . . . . . . 8 (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
3533, 34bitr4i 278 . . . . . . 7 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
36 df-3an 1088 . . . . . . 7 ((𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
3731, 35, 363bitr4g 314 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3819, 37bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3915, 38bitrid 283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
4014, 39opabbi2dv 5862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
4113, 40eqtrd 2774 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
42 eqeq1 2738 . . . . 5 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩))
43 vex 3481 . . . . . 6 𝑓 ∈ V
44 vex 3481 . . . . . 6 𝑡 ∈ V
4543, 44opth 5486 . . . . 5 (⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
4642, 45bitrdi 287 . . . 4 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4746rexbidv 3176 . . 3 (𝑔 = ⟨𝑓, 𝑡⟩ → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4847rabxp 5736 . 2 {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩} = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))}
4941, 48eqtr4di 2792 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  {crab 3432  {csn 4630  cop 4636   class class class wbr 5147  {copab 5209  cmpt 5230   I cid 5581   × cxp 5686  cres 5690  cfv 6562  Basecbs 17244  lecple 17304  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  trLctrl 40140  TEndoctendo 40734  DIsoAcdia 41010  DIsoBcdib 41120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-undef 8296  df-map 8866  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tendo 40737  df-disoa 41011  df-dib 41121
This theorem is referenced by:  dib1dim2  41150
  Copyright terms: Public domain W3C validator