Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 40024
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐡 = (Baseβ€˜πΎ)
dib1dim.h 𝐻 = (LHypβ€˜πΎ)
dib1dim.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dib1dim.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
dib1dim.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dib1dim.o 𝑂 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dib1dim.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = {𝑔 ∈ (𝑇 Γ— 𝐸) ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ©})
Distinct variable groups:   𝐡,β„Ž   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   β„Ž,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,β„Ž,𝑇,𝑠   β„Ž,π‘Š,𝑠
Allowed substitution hints:   𝐡(𝑔,𝑠)   𝑅(𝑔,β„Ž)   𝐸(β„Ž)   𝐹(β„Ž)   𝐻(𝑔,β„Ž)   𝐼(𝑔,β„Ž,𝑠)   𝐾(𝑔)   𝑂(β„Ž)   π‘Š(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 dib1dim.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 dib1dim.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 dib1dim.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 dib1dim.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5trlcl 39023 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ 𝐡)
7 eqid 2732 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
87, 3, 4, 5trlle 39043 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ)(leβ€˜πΎ)π‘Š)
9 dib1dim.o . . . . 5 𝑂 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
10 eqid 2732 . . . . 5 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
122, 7, 3, 4, 9, 10, 11dibval2 40003 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((π‘…β€˜πΉ) ∈ 𝐡 ∧ (π‘…β€˜πΉ)(leβ€˜πΎ)π‘Š)) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂}))
131, 6, 8, 12syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂}))
14 relxp 5693 . . . 4 Rel ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂})
15 opelxp 5711 . . . . 5 (βŸ¨π‘“, π‘‘βŸ© ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂}) ↔ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) ∧ 𝑑 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
173, 4, 5, 16, 10dia1dim 39920 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) = {𝑓 ∣ βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ)})
1817eqabrd 2876 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) ↔ βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ)))
1918anbi1d 630 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) ∧ 𝑑 ∈ {𝑂}) ↔ (βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 ∈ {𝑂})))
203, 4, 16tendocl 39626 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
21203expa 1118 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
2221an32s 650 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 39649 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
2423ad2antrr 724 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ 𝑂 ∈ 𝐸)
2522, 24jca 512 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ 𝑂 ∈ 𝐸))
26 eleq1 2821 . . . . . . . . . . 11 (𝑓 = (π‘ β€˜πΉ) β†’ (𝑓 ∈ 𝑇 ↔ (π‘ β€˜πΉ) ∈ 𝑇))
27 eleq1 2821 . . . . . . . . . . 11 (𝑑 = 𝑂 β†’ (𝑑 ∈ 𝐸 ↔ 𝑂 ∈ 𝐸))
2826, 27bi2anan9 637 . . . . . . . . . 10 ((𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂) β†’ ((𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸) ↔ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ 𝑂 ∈ 𝐸)))
2925, 28syl5ibrcom 246 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ ((𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂) β†’ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸)))
3029rexlimdva 3155 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂) β†’ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸)))
3130pm4.71rd 563 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂) ↔ ((𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸) ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))))
32 velsn 4643 . . . . . . . . 9 (𝑑 ∈ {𝑂} ↔ 𝑑 = 𝑂)
3332anbi2i 623 . . . . . . . 8 ((βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 ∈ {𝑂}) ↔ (βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))
34 r19.41v 3188 . . . . . . . 8 (βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂) ↔ (βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))
3533, 34bitr4i 277 . . . . . . 7 ((βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 ∈ {𝑂}) ↔ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))
36 df-3an 1089 . . . . . . 7 ((𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂)) ↔ ((𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸) ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂)))
3731, 35, 363bitr4g 313 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((βˆƒπ‘  ∈ 𝐸 𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 ∈ {𝑂}) ↔ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))))
3819, 37bitrd 278 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) ∧ 𝑑 ∈ {𝑂}) ↔ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))))
3915, 38bitrid 282 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (βŸ¨π‘“, π‘‘βŸ© ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂}) ↔ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))))
4014, 39opabbi2dv 5847 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜(π‘…β€˜πΉ)) Γ— {𝑂}) = {βŸ¨π‘“, π‘‘βŸ© ∣ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))})
4113, 40eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = {βŸ¨π‘“, π‘‘βŸ© ∣ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))})
42 eqeq1 2736 . . . . 5 (𝑔 = βŸ¨π‘“, π‘‘βŸ© β†’ (𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ© ↔ βŸ¨π‘“, π‘‘βŸ© = ⟨(π‘ β€˜πΉ), π‘‚βŸ©))
43 vex 3478 . . . . . 6 𝑓 ∈ V
44 vex 3478 . . . . . 6 𝑑 ∈ V
4543, 44opth 5475 . . . . 5 (βŸ¨π‘“, π‘‘βŸ© = ⟨(π‘ β€˜πΉ), π‘‚βŸ© ↔ (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))
4642, 45bitrdi 286 . . . 4 (𝑔 = βŸ¨π‘“, π‘‘βŸ© β†’ (𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ© ↔ (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂)))
4746rexbidv 3178 . . 3 (𝑔 = βŸ¨π‘“, π‘‘βŸ© β†’ (βˆƒπ‘  ∈ 𝐸 𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ© ↔ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂)))
4847rabxp 5722 . 2 {𝑔 ∈ (𝑇 Γ— 𝐸) ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ©} = {βŸ¨π‘“, π‘‘βŸ© ∣ (𝑓 ∈ 𝑇 ∧ 𝑑 ∈ 𝐸 ∧ βˆƒπ‘  ∈ 𝐸 (𝑓 = (π‘ β€˜πΉ) ∧ 𝑑 = 𝑂))}
4941, 48eqtr4di 2790 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (πΌβ€˜(π‘…β€˜πΉ)) = {𝑔 ∈ (𝑇 Γ— 𝐸) ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = ⟨(π‘ β€˜πΉ), π‘‚βŸ©})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  {csn 4627  βŸ¨cop 4633   class class class wbr 5147  {copab 5209   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673   β†Ύ cres 5677  β€˜cfv 6540  Basecbs 17140  lecple 17200  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017  TEndoctendo 39611  DIsoAcdia 39887  DIsoBcdib 39997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-tendo 39614  df-disoa 39888  df-dib 39998
This theorem is referenced by:  dib1dim2  40027
  Copyright terms: Public domain W3C validator