MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2 Structured version   Visualization version   GIF version

Theorem abeq2 2872
Description: Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2810 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5225 to inex1 5241 (look at the instance of zfauscl 5225 that occurs in the proof of inex1 5241). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4184 and cp 9649; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9648. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. Usage of abeq2w 2815 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
abeq2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abeq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1913 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
2 hbab1 2724 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2cleqh 2862 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 338 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1822 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 274 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  abeq1  2873  clabel  2885  rabid2OLD  3315  ru  3715  sbcabel  3811  dfss2OLD  3908  zfrep4  5220  dmopab3  5828  funimaexg  6520  fineqvrep  33064  bj-ru1  35132  sticksstones1  40102  sticksstones2  40103
  Copyright terms: Public domain W3C validator