Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq1 | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 2873. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
abeq1 | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2873 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | eqcom 2746 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
3 | bicom 221 | . . 3 ⊢ ((𝜑 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) | |
4 | 3 | albii 1825 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
5 | 1, 2, 4 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2109 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: rabeqc 3623 disjOLD 4387 dm0rn0 5831 dffo3 6972 dfsup2 9164 rankf 9536 fmla0xp 33324 dfon3 34173 dfiota3 34204 scottabf 41811 dffo3f 42670 |
Copyright terms: Public domain | W3C validator |