Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq1 | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 2870. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
abeq1 | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2870 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | eqcom 2743 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
3 | bicom 221 | . . 3 ⊢ ((𝜑 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) | |
4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 |
This theorem is referenced by: rabeqc 3627 disjOLD 4388 dm0rn0 5846 dffo3 7010 dfsup2 9247 rankf 9596 fmla0xp 33390 dfon3 34239 dfiota3 34270 scottabf 41896 dffo3f 42761 |
Copyright terms: Public domain | W3C validator |