MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq1 Structured version   Visualization version   GIF version

Theorem abeq1 2874
Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 2873. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2873 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 eqcom 2746 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
3 bicom 221 . . 3 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
43albii 1825 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝑥𝐴𝜑))
51, 2, 43bitr4i 302 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  wcel 2109  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817
This theorem is referenced by:  rabeqc  3623  disjOLD  4387  dm0rn0  5831  dffo3  6972  dfsup2  9164  rankf  9536  fmla0xp  33324  dfon3  34173  dfiota3  34204  scottabf  41811  dffo3f  42670
  Copyright terms: Public domain W3C validator