| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelimab | Structured version Visualization version GIF version | ||
| Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
| Ref | Expression |
|---|---|
| fvelimab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . 3 ⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
| 3 | fvex 6874 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 4 | eleq1 2817 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐶 → ((𝐹‘𝑥) ∈ V ↔ 𝐶 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
| 6 | 5 | rexlimivw 3131 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
| 7 | 6 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
| 8 | eleq1 2817 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) | |
| 9 | eqeq2 2742 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → ((𝐹‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝐶)) | |
| 10 | 9 | rexbidv 3158 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| 11 | 8, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
| 12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)))) |
| 13 | fnfun 6621 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 14 | fndm 6624 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 15 | 14 | sseq2d 3982 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 16 | 15 | biimpar 477 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 17 | dfimafn 6926 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) | |
| 18 | 13, 16, 17 | syl2an2r 685 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) |
| 19 | 18 | eqabrd 2871 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
| 20 | 12, 19 | vtoclg 3523 | . . 3 ⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
| 21 | 20 | impcom 407 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| 22 | 2, 7, 21 | pm5.21nd 801 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 dom cdm 5641 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: fvelimabd 6937 fimarab 6938 unima 6939 ssimaex 6949 ralima 7214 reximaOLD 7216 ralimaOLD 7217 f1elima 7241 fnssintima 7340 imaeqsexvOLD 7341 ovelimab 7570 fimaproj 8117 tcrank 9844 djuun 9886 ackbij2 10202 fin1a2lem6 10365 iunfo 10499 grothomex 10789 axpre-sup 11129 injresinjlem 13755 txkgen 23546 fmucndlem 24185 efopn 26574 nocvxmin 27697 eqscut2 27725 cuteq0 27751 elold 27788 lrrecfr 27857 negsproplem2 27942 negsunif 27968 bdayon 28180 renegscl 28356 pjimai 32112 indf1ofs 32796 qtophaus 33833 eulerpartgbij 34370 eulerpartlemgvv 34374 ballotlemsima 34514 elmthm 35570 elintfv 35759 aks6d1c6lem5 42172 isnacs2 42701 isnacs3 42705 islmodfg 43065 kercvrlsm 43079 isnumbasgrplem2 43100 dfacbasgrp 43104 fourierdlem62 46173 uhgrimisgrgric 47935 clnbgrgrim 47938 |
| Copyright terms: Public domain | W3C validator |