![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelimab | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . . 3 ⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) | |
2 | 1 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
3 | fvex 6920 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2827 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐶 → ((𝐹‘𝑥) ∈ V ↔ 𝐶 ∈ V)) | |
5 | 3, 4 | mpbii 233 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3149 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
7 | 6 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
8 | eleq1 2827 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) | |
9 | eqeq2 2747 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → ((𝐹‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝐶)) | |
10 | 9 | rexbidv 3177 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
11 | 8, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)))) |
13 | fnfun 6669 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
14 | fndm 6672 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
15 | 14 | sseq2d 4028 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
16 | 15 | biimpar 477 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
17 | dfimafn 6971 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) | |
18 | 13, 16, 17 | syl2an2r 685 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) |
19 | 18 | eqabrd 2882 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
20 | 12, 19 | vtoclg 3554 | . . 3 ⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
21 | 20 | impcom 407 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
22 | 2, 7, 21 | pm5.21nd 802 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 dom cdm 5689 “ cima 5692 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: fvelimabd 6982 fimarab 6983 unima 6984 ssimaex 6994 ralima 7257 reximaOLD 7259 ralimaOLD 7260 f1elima 7283 fnssintima 7382 imaeqsexvOLD 7383 ovelimab 7611 fimaproj 8159 tcrank 9922 djuun 9964 ackbij2 10280 fin1a2lem6 10443 iunfo 10577 grothomex 10867 axpre-sup 11207 injresinjlem 13823 txkgen 23676 fmucndlem 24316 efopn 26715 nocvxmin 27838 eqscut2 27866 cuteq0 27892 elold 27923 lrrecfr 27991 negsproplem2 28076 negsunif 28102 renegscl 28445 pjimai 32205 qtophaus 33797 indf1ofs 34007 eulerpartgbij 34354 eulerpartlemgvv 34358 ballotlemsima 34497 elmthm 35561 elintfv 35746 aks6d1c6lem5 42159 isnacs2 42694 isnacs3 42698 islmodfg 43058 kercvrlsm 43072 isnumbasgrplem2 43093 dfacbasgrp 43097 fourierdlem62 46124 uhgrimisgrgric 47837 clnbgrgrim 47840 |
Copyright terms: Public domain | W3C validator |