![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelimab | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3463 | . . 3 ⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) | |
2 | 1 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
3 | fvex 6855 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2825 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐶 → ((𝐹‘𝑥) ∈ V ↔ 𝐶 ∈ V)) | |
5 | 3, 4 | mpbii 232 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3148 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
7 | 6 | anim2i 617 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
8 | eleq1 2825 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) | |
9 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → ((𝐹‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝐶)) | |
10 | 9 | rexbidv 3175 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
11 | 8, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)))) |
13 | fnfun 6602 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
14 | fndm 6605 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
15 | 14 | sseq2d 3976 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
16 | 15 | biimpar 478 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
17 | dfimafn 6905 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) | |
18 | 13, 16, 17 | syl2an2r 683 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) |
19 | 18 | eqabd 2880 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
20 | 12, 19 | vtoclg 3525 | . . 3 ⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
21 | 20 | impcom 408 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
22 | 2, 7, 21 | pm5.21nd 800 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2713 ∃wrex 3073 Vcvv 3445 ⊆ wss 3910 dom cdm 5633 “ cima 5636 Fun wfun 6490 Fn wfn 6491 ‘cfv 6496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-fv 6504 |
This theorem is referenced by: fvelimabd 6915 unima 6916 ssimaex 6926 rexima 7187 ralima 7188 f1elima 7210 fnssintima 7307 imaeqsexv 7308 ovelimab 7532 fimaproj 8067 tcrank 9820 djuun 9862 ackbij2 10179 fin1a2lem6 10341 iunfo 10475 grothomex 10765 axpre-sup 11105 injresinjlem 13692 txkgen 23003 fmucndlem 23643 efopn 26013 nocvxmin 27118 eqscut2 27145 cuteq0 27171 elold 27199 lrrecfr 27255 negsproplem2 27327 negsunif 27350 pjimai 31118 fimarab 31559 qtophaus 32417 indf1ofs 32625 eulerpartgbij 32972 eulerpartlemgvv 32976 ballotlemsima 33115 elmthm 34170 elintfv 34339 isnacs2 41015 isnacs3 41019 islmodfg 41382 kercvrlsm 41396 isnumbasgrplem2 41417 dfacbasgrp 41421 fourierdlem62 44399 |
Copyright terms: Public domain | W3C validator |