![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelimab | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . 3 ⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) | |
2 | 1 | anim2i 616 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
3 | fvex 6933 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2832 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐶 → ((𝐹‘𝑥) ∈ V ↔ 𝐶 ∈ V)) | |
5 | 3, 4 | mpbii 233 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3157 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
7 | 6 | anim2i 616 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
8 | eleq1 2832 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) | |
9 | eqeq2 2752 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → ((𝐹‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝐶)) | |
10 | 9 | rexbidv 3185 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
11 | 8, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)))) |
13 | fnfun 6679 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
14 | fndm 6682 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
15 | 14 | sseq2d 4041 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
16 | 15 | biimpar 477 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
17 | dfimafn 6984 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) | |
18 | 13, 16, 17 | syl2an2r 684 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) |
19 | 18 | eqabrd 2887 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
20 | 12, 19 | vtoclg 3566 | . . 3 ⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
21 | 20 | impcom 407 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
22 | 2, 7, 21 | pm5.21nd 801 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: fvelimabd 6995 fimarab 6996 unima 6997 ssimaex 7007 ralima 7274 reximaOLD 7276 ralimaOLD 7277 f1elima 7300 fnssintima 7398 imaeqsexvOLD 7399 ovelimab 7628 fimaproj 8176 tcrank 9953 djuun 9995 ackbij2 10311 fin1a2lem6 10474 iunfo 10608 grothomex 10898 axpre-sup 11238 injresinjlem 13837 txkgen 23681 fmucndlem 24321 efopn 26718 nocvxmin 27841 eqscut2 27869 cuteq0 27895 elold 27926 lrrecfr 27994 negsproplem2 28079 negsunif 28105 renegscl 28448 pjimai 32208 qtophaus 33782 indf1ofs 33990 eulerpartgbij 34337 eulerpartlemgvv 34341 ballotlemsima 34480 elmthm 35544 elintfv 35728 aks6d1c6lem5 42134 isnacs2 42662 isnacs3 42666 islmodfg 43026 kercvrlsm 43040 isnumbasgrplem2 43061 dfacbasgrp 43065 fourierdlem62 46089 uhgrimisgrgric 47783 clnbgrgrim 47786 |
Copyright terms: Public domain | W3C validator |