Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvelimab | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) | |
2 | 1 | anim2i 616 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
3 | fvex 6769 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2826 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐶 → ((𝐹‘𝑥) ∈ V ↔ 𝐶 ∈ V)) | |
5 | 3, 4 | mpbii 232 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3210 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶 → 𝐶 ∈ V) |
7 | 6 | anim2i 616 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
8 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) | |
9 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → ((𝐹‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝐶)) | |
10 | 9 | rexbidv 3225 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
11 | 8, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)))) |
13 | fnfun 6517 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
14 | fndm 6520 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
15 | 14 | sseq2d 3949 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
16 | 15 | biimpar 477 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
17 | dfimafn 6814 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) | |
18 | 13, 16, 17 | syl2an2r 681 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦}) |
19 | 18 | abeq2d 2873 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
20 | 12, 19 | vtoclg 3495 | . . 3 ⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶))) |
21 | 20 | impcom 407 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
22 | 2, 7, 21 | pm5.21nd 798 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 dom cdm 5580 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: fvelimabd 6824 unima 6825 ssimaex 6835 rexima 7095 ralima 7096 f1elima 7117 ovelimab 7428 fimaproj 7947 tcrank 9573 djuun 9615 ackbij2 9930 fin1a2lem6 10092 iunfo 10226 grothomex 10516 axpre-sup 10856 injresinjlem 13435 txkgen 22711 fmucndlem 23351 efopn 25718 pjimai 30439 fimarab 30881 qtophaus 31688 indf1ofs 31894 eulerpartgbij 32239 eulerpartlemgvv 32243 ballotlemsima 32382 elmthm 33438 fnssintima 33578 imaeqsexv 33593 elintfv 33644 nocvxmin 33900 eqscut2 33927 elold 33980 lrrecfr 34027 isnacs2 40444 isnacs3 40448 islmodfg 40810 kercvrlsm 40824 isnumbasgrplem2 40845 dfacbasgrp 40849 fourierdlem62 43599 |
Copyright terms: Public domain | W3C validator |