MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimab Structured version   Visualization version   GIF version

Theorem fvelimab 6981
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3501 . . 3 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 fvex 6919 . . . . 5 (𝐹𝑥) ∈ V
4 eleq1 2829 . . . . 5 ((𝐹𝑥) = 𝐶 → ((𝐹𝑥) ∈ V ↔ 𝐶 ∈ V))
53, 4mpbii 233 . . . 4 ((𝐹𝑥) = 𝐶𝐶 ∈ V)
65rexlimivw 3151 . . 3 (∃𝑥𝐵 (𝐹𝑥) = 𝐶𝐶 ∈ V)
76anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑥𝐵 (𝐹𝑥) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
8 eleq1 2829 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
9 eqeq2 2749 . . . . . . 7 (𝑦 = 𝐶 → ((𝐹𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝐶))
109rexbidv 3179 . . . . . 6 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
118, 10bibi12d 345 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
1211imbi2d 340 . . . 4 (𝑦 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))))
13 fnfun 6668 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
14 fndm 6671 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
1514sseq2d 4016 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
1615biimpar 477 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
17 dfimafn 6971 . . . . . 6 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1813, 16, 17syl2an2r 685 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1918eqabrd 2884 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
2012, 19vtoclg 3554 . . 3 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
2120impcom 407 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
222, 7, 21pm5.21nd 802 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  Vcvv 3480  wss 3951  dom cdm 5685  cima 5688  Fun wfun 6555   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  fvelimabd  6982  fimarab  6983  unima  6984  ssimaex  6994  ralima  7257  reximaOLD  7259  ralimaOLD  7260  f1elima  7283  fnssintima  7382  imaeqsexvOLD  7383  ovelimab  7611  fimaproj  8160  tcrank  9924  djuun  9966  ackbij2  10282  fin1a2lem6  10445  iunfo  10579  grothomex  10869  axpre-sup  11209  injresinjlem  13826  txkgen  23660  fmucndlem  24300  efopn  26700  nocvxmin  27823  eqscut2  27851  cuteq0  27877  elold  27908  lrrecfr  27976  negsproplem2  28061  negsunif  28087  renegscl  28430  pjimai  32195  indf1ofs  32851  qtophaus  33835  eulerpartgbij  34374  eulerpartlemgvv  34378  ballotlemsima  34518  elmthm  35581  elintfv  35765  aks6d1c6lem5  42178  isnacs2  42717  isnacs3  42721  islmodfg  43081  kercvrlsm  43095  isnumbasgrplem2  43116  dfacbasgrp  43120  fourierdlem62  46183  uhgrimisgrgric  47899  clnbgrgrim  47902
  Copyright terms: Public domain W3C validator