MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimab Structured version   Visualization version   GIF version

Theorem fvelimab 6899
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . 3 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 fvex 6839 . . . . 5 (𝐹𝑥) ∈ V
4 eleq1 2816 . . . . 5 ((𝐹𝑥) = 𝐶 → ((𝐹𝑥) ∈ V ↔ 𝐶 ∈ V))
53, 4mpbii 233 . . . 4 ((𝐹𝑥) = 𝐶𝐶 ∈ V)
65rexlimivw 3126 . . 3 (∃𝑥𝐵 (𝐹𝑥) = 𝐶𝐶 ∈ V)
76anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑥𝐵 (𝐹𝑥) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
8 eleq1 2816 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
9 eqeq2 2741 . . . . . . 7 (𝑦 = 𝐶 → ((𝐹𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝐶))
109rexbidv 3153 . . . . . 6 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
118, 10bibi12d 345 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
1211imbi2d 340 . . . 4 (𝑦 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))))
13 fnfun 6586 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
14 fndm 6589 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
1514sseq2d 3970 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
1615biimpar 477 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
17 dfimafn 6889 . . . . . 6 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1813, 16, 17syl2an2r 685 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1918eqabrd 2870 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
2012, 19vtoclg 3511 . . 3 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
2120impcom 407 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
222, 7, 21pm5.21nd 801 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438  wss 3905  dom cdm 5623  cima 5626  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fvelimabd  6900  fimarab  6901  unima  6902  ssimaex  6912  ralima  7177  reximaOLD  7179  ralimaOLD  7180  f1elima  7204  fnssintima  7303  imaeqsexvOLD  7304  ovelimab  7531  fimaproj  8075  tcrank  9799  djuun  9841  ackbij2  10155  fin1a2lem6  10318  iunfo  10452  grothomex  10742  axpre-sup  11082  injresinjlem  13708  txkgen  23555  fmucndlem  24194  efopn  26583  nobdaymin  27705  eqscut2  27735  cuteq0  27764  elold  27801  lrrecfr  27873  negsproplem2  27958  negsunif  27984  bdayon  28196  renegscl  28385  pjimai  32138  indf1ofs  32822  qtophaus  33805  eulerpartgbij  34342  eulerpartlemgvv  34346  ballotlemsima  34486  elmthm  35551  elintfv  35740  aks6d1c6lem5  42153  isnacs2  42682  isnacs3  42686  islmodfg  43045  kercvrlsm  43059  isnumbasgrplem2  43080  dfacbasgrp  43084  fourierdlem62  46153  uhgrimisgrgric  47919  clnbgrgrim  47922
  Copyright terms: Public domain W3C validator