MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimab Structured version   Visualization version   GIF version

Theorem fvelimab 6900
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . 3 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 fvex 6841 . . . . 5 (𝐹𝑥) ∈ V
4 eleq1 2821 . . . . 5 ((𝐹𝑥) = 𝐶 → ((𝐹𝑥) ∈ V ↔ 𝐶 ∈ V))
53, 4mpbii 233 . . . 4 ((𝐹𝑥) = 𝐶𝐶 ∈ V)
65rexlimivw 3130 . . 3 (∃𝑥𝐵 (𝐹𝑥) = 𝐶𝐶 ∈ V)
76anim2i 617 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑥𝐵 (𝐹𝑥) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
8 eleq1 2821 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
9 eqeq2 2745 . . . . . . 7 (𝑦 = 𝐶 → ((𝐹𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝐶))
109rexbidv 3157 . . . . . 6 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
118, 10bibi12d 345 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
1211imbi2d 340 . . . 4 (𝑦 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))))
13 fnfun 6586 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
14 fndm 6589 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
1514sseq2d 3963 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
1615biimpar 477 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
17 dfimafn 6890 . . . . . 6 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1813, 16, 17syl2an2r 685 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1918eqabrd 2874 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
2012, 19vtoclg 3508 . . 3 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
2120impcom 407 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
222, 7, 21pm5.21nd 801 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  wss 3898  dom cdm 5619  cima 5622  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fvelimabd  6901  fimarab  6902  unima  6903  ssimaex  6913  ralima  7177  reximaOLD  7179  ralimaOLD  7180  f1elima  7203  fnssintima  7302  imaeqsexvOLD  7303  ovelimab  7530  fimaproj  8071  tcrank  9784  djuun  9826  ackbij2  10140  fin1a2lem6  10303  iunfo  10437  grothomex  10727  axpre-sup  11067  injresinjlem  13692  txkgen  23568  fmucndlem  24206  efopn  26595  nobdaymin  27717  eqscut2  27748  cuteq0  27777  elold  27815  lrrecfr  27887  negsproplem2  27972  negsunif  27998  bdayon  28210  renegscl  28401  pjimai  32158  indf1ofs  32854  qtophaus  33870  eulerpartgbij  34406  eulerpartlemgvv  34410  ballotlemsima  34550  elmthm  35641  elintfv  35830  aks6d1c6lem5  42291  isnacs2  42824  isnacs3  42828  islmodfg  43187  kercvrlsm  43201  isnumbasgrplem2  43222  dfacbasgrp  43226  fourierdlem62  46291  uhgrimisgrgric  48056  clnbgrgrim  48059
  Copyright terms: Public domain W3C validator