MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd2 Structured version   Visualization version   GIF version

Theorem noinfbnd2 27079
Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd2.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd2 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Distinct variable groups:   𝐵,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑇,𝑏,𝑔   𝑣,𝑢,𝑥,𝑦   𝑉,𝑏,𝑔   𝑥,𝑣   𝑥,𝑉   𝑦,𝑣,𝑥   𝑍,𝑏,𝑔,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . 6 𝑥((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)
2 noinfbnd2.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 nfre1 3268 . . . . . . . . . 10 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥
4 nfriota1 7320 . . . . . . . . . . 11 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
54nfdm 5906 . . . . . . . . . . . . 13 𝑥dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
6 nfcv 2907 . . . . . . . . . . . . 13 𝑥1o
75, 6nfop 4846 . . . . . . . . . . . 12 𝑥⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o
87nfsn 4668 . . . . . . . . . . 11 𝑥{⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}
94, 8nfun 4125 . . . . . . . . . 10 𝑥((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
10 nfcv 2907 . . . . . . . . . . 11 𝑥{𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
11 nfiota1 6450 . . . . . . . . . . 11 𝑥(℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1210, 11nfmpt 5212 . . . . . . . . . 10 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
133, 9, 12nfif 4516 . . . . . . . . 9 𝑥if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
142, 13nfcxfr 2905 . . . . . . . 8 𝑥𝑇
15 nfcv 2907 . . . . . . . 8 𝑥 <s
16 nfcv 2907 . . . . . . . . 9 𝑥𝑍
1714nfdm 5906 . . . . . . . . 9 𝑥dom 𝑇
1816, 17nfres 5939 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑇)
1914, 15, 18nfbr 5152 . . . . . . 7 𝑥 𝑇 <s (𝑍 ↾ dom 𝑇)
2019nfn 1860 . . . . . 6 𝑥 ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)
211, 20nfim 1899 . . . . 5 𝑥(((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
22 noinfbnd2lem1 27078 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
23223expb 1120 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
24 rspe 3232 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2524adantr 481 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2625iftrued 4494 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
27 simpl 483 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
28 simprl1 1218 . . . . . . . . . . . . . . 15 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
29 nominmo 27047 . . . . . . . . . . . . . . 15 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3028, 29syl 17 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
31 reu5 3355 . . . . . . . . . . . . . 14 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3225, 30, 31sylanbrc 583 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
33 riota1 7335 . . . . . . . . . . . . 13 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3527, 34mpbid 231 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
3635dmeqd 5861 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = dom 𝑥)
3736opeq1d 4836 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩ = ⟨dom 𝑥, 1o⟩)
3837sneqd 4598 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {⟨dom 𝑥, 1o⟩})
3935, 38uneq12d 4124 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4026, 39eqtrd 2776 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
412, 40eqtrid 2788 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4241dmeqd 5861 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
43 1oex 8422 . . . . . . . . . . . . 13 1o ∈ V
4443dmsnop 6168 . . . . . . . . . . . 12 dom {⟨dom 𝑥, 1o⟩} = {dom 𝑥}
4544uneq2i 4120 . . . . . . . . . . 11 (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ {dom 𝑥})
46 dmun 5866 . . . . . . . . . . 11 dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩})
47 df-suc 6323 . . . . . . . . . . 11 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
4845, 46, 473eqtr4ri 2775 . . . . . . . . . 10 suc dom 𝑥 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩})
4942, 48eqtr4di 2794 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = suc dom 𝑥)
5049reseq2d 5937 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) = (𝑍 ↾ suc dom 𝑥))
5141, 50breq12d 5118 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 <s (𝑍 ↾ dom 𝑇) ↔ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥)))
5223, 51mtbird 324 . . . . . 6 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
5352exp31 420 . . . . 5 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))))
5421, 53rexlimi 3242 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
5554imp 407 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
56 simprl3 1220 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑍 No )
572noinfno 27066 . . . . . . . . 9 ((𝐵 No 𝐵𝑉) → 𝑇 No )
58573adant3 1132 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → 𝑇 No )
5958ad2antrl 726 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 No )
60 nodmon 26998 . . . . . . 7 (𝑇 No → dom 𝑇 ∈ On)
6159, 60syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 ∈ On)
62 noreson 27008 . . . . . 6 ((𝑍 No ∧ dom 𝑇 ∈ On) → (𝑍 ↾ dom 𝑇) ∈ No )
6356, 61, 62syl2anc 584 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) ∈ No )
64 nofun 26997 . . . . . . . . 9 (𝑇 No → Fun 𝑇)
65 funrel 6518 . . . . . . . . 9 (Fun 𝑇 → Rel 𝑇)
6658, 64, 653syl 18 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → Rel 𝑇)
6766ad2antrl 726 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → Rel 𝑇)
68 resdm 5982 . . . . . . 7 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
6967, 68syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) = 𝑇)
7069, 59eqeltrd 2838 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) ∈ No )
71 resdmss 6187 . . . . . 6 dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇
7271a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇)
73 resdmss 6187 . . . . . 6 dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇
7473a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇)
752noinfdm 27067 . . . . . . . . . . 11 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑔 ∣ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
7675eqabd 2880 . . . . . . . . . 10 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
7776adantr 481 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
78 simpll 765 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
79 simprl1 1218 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
8079adantr 481 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵 No )
81 simprl2 1219 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵𝑉)
8281adantr 481 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵𝑉)
83 simprl 769 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐵)
84 simprrl 779 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
85 simprrr 780 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
86 breq2 5109 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
8786notbid 317 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
88 reseq1 5931 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑞 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))
8988eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → ((𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9087, 89imbi12d 344 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
9190cbvralvw 3225 . . . . . . . . . . . . 13 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9285, 91sylib 217 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
932noinfres 27070 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
9478, 80, 82, 83, 84, 92, 93syl123anc 1387 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
95 breq2 5109 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑍 <s 𝑏𝑍 <s 𝑝))
96 simplrr 776 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑏𝐵 𝑍 <s 𝑏)
9795, 96, 83rspcdva 3582 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 <s 𝑝)
9856adantr 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
9980, 83sseldd 3945 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
100 sltso 27024 . . . . . . . . . . . . . . 15 <s Or No
101 soasym 5576 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑍 No 𝑝 No )) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
102100, 101mpan 688 . . . . . . . . . . . . . 14 ((𝑍 No 𝑝 No ) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10398, 99, 102syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10497, 103mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑝 <s 𝑍)
105 nodmon 26998 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10699, 105syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
107 onelon 6342 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
108106, 84, 107syl2anc 584 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
109 onsucb 7752 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
110108, 109sylib 217 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
111 sltres 27010 . . . . . . . . . . . . 13 ((𝑝 No 𝑍 No ∧ suc 𝑔 ∈ On) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
11299, 98, 110, 111syl3anc 1371 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
113104, 112mtod 197 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
11494, 113eqnbrtrd 5123 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
115114rexlimdvaa 3153 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
11677, 115sylbid 239 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
117116imp 407 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
118 nodmord 27001 . . . . . . . . . . 11 (𝑇 No → Ord dom 𝑇)
119 ordsucss 7753 . . . . . . . . . . 11 (Ord dom 𝑇 → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
12059, 118, 1193syl 18 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
121120imp 407 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → suc 𝑔 ⊆ dom 𝑇)
122121resabs1d 5968 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑇 ↾ suc 𝑔))
123121resabs1d 5968 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
124122, 123breq12d 5118 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → (((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) ↔ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
125117, 124mtbird 324 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
126125ralrimiva 3143 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
127 noresle 27045 . . . . 5 ((((𝑍 ↾ dom 𝑇) ∈ No ∧ (𝑇 ↾ dom 𝑇) ∈ No ) ∧ (dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12863, 70, 72, 74, 126, 127syl23anc 1377 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12969breq1d 5115 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇) ↔ 𝑇 <s (𝑍 ↾ dom 𝑇)))
130128, 129mtbid 323 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
13155, 130pm2.61ian 810 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
132 simplr 767 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
133 simpll1 1212 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵 No )
134 simpll2 1213 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵𝑉)
135 simpr 485 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏𝐵)
1362noinfbnd1 27077 . . . . . 6 ((𝐵 No 𝐵𝑉𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
137133, 134, 135, 136syl3anc 1371 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
138 simpl3 1193 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑍 No )
139 simpl1 1191 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵 No )
140 simpl2 1192 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵𝑉)
141139, 140, 57syl2anc 584 . . . . . . . . 9 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑇 No )
142141, 60syl 17 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → dom 𝑇 ∈ On)
143138, 142, 62syl2anc 584 . . . . . . 7 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) ∈ No )
144143adantr 481 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) ∈ No )
145141adantr 481 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 No )
146139sselda 3944 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏 No )
147142adantr 481 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → dom 𝑇 ∈ On)
148 noreson 27008 . . . . . . 7 ((𝑏 No ∧ dom 𝑇 ∈ On) → (𝑏 ↾ dom 𝑇) ∈ No )
149146, 147, 148syl2anc 584 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑏 ↾ dom 𝑇) ∈ No )
150 sotr2 5577 . . . . . . 7 (( <s Or No ∧ ((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No )) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
151100, 150mpan 688 . . . . . 6 (((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No ) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
152144, 145, 149, 151syl3anc 1371 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
153132, 137, 152mp2and 697 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇))
154 simpll3 1214 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 No )
155 sltres 27010 . . . . 5 ((𝑍 No 𝑏 No ∧ dom 𝑇 ∈ On) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
156154, 146, 147, 155syl3anc 1371 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
157153, 156mpd 15 . . 3 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 <s 𝑏)
158157ralrimiva 3143 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → ∀𝑏𝐵 𝑍 <s 𝑏)
159131, 158impbida 799 1 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  ∃!wreu 3351  ∃*wrmo 3352  cun 3908  wss 3910  ifcif 4486  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188   Or wor 5544  dom cdm 5633  cres 5635  Rel wrel 5638  Ord word 6316  Oncon0 6317  suc csuc 6319  cio 6446  Fun wfun 6490  cfv 6496  crio 7312  1oc1o 8405   No csur 26988   <s cslt 26989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993
This theorem is referenced by:  nosupinfsep  27080  noetainflem4  27088
  Copyright terms: Public domain W3C validator