MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd2 Structured version   Visualization version   GIF version

Theorem noinfbnd2 27791
Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd2.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd2 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Distinct variable groups:   𝐵,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑇,𝑏,𝑔   𝑣,𝑢,𝑥,𝑦   𝑉,𝑏,𝑔   𝑥,𝑣   𝑥,𝑉   𝑦,𝑣,𝑥   𝑍,𝑏,𝑔,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . . 6 𝑥((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)
2 noinfbnd2.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 nfre1 3283 . . . . . . . . . 10 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥
4 nfriota1 7395 . . . . . . . . . . 11 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
54nfdm 5965 . . . . . . . . . . . . 13 𝑥dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
6 nfcv 2903 . . . . . . . . . . . . 13 𝑥1o
75, 6nfop 4894 . . . . . . . . . . . 12 𝑥⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o
87nfsn 4712 . . . . . . . . . . 11 𝑥{⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}
94, 8nfun 4180 . . . . . . . . . 10 𝑥((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
10 nfcv 2903 . . . . . . . . . . 11 𝑥{𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
11 nfiota1 6518 . . . . . . . . . . 11 𝑥(℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1210, 11nfmpt 5255 . . . . . . . . . 10 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
133, 9, 12nfif 4561 . . . . . . . . 9 𝑥if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
142, 13nfcxfr 2901 . . . . . . . 8 𝑥𝑇
15 nfcv 2903 . . . . . . . 8 𝑥 <s
16 nfcv 2903 . . . . . . . . 9 𝑥𝑍
1714nfdm 5965 . . . . . . . . 9 𝑥dom 𝑇
1816, 17nfres 6002 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑇)
1914, 15, 18nfbr 5195 . . . . . . 7 𝑥 𝑇 <s (𝑍 ↾ dom 𝑇)
2019nfn 1855 . . . . . 6 𝑥 ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)
211, 20nfim 1894 . . . . 5 𝑥(((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
22 noinfbnd2lem1 27790 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
23223expb 1119 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
24 rspe 3247 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2524adantr 480 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2625iftrued 4539 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
27 simpl 482 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
28 simprl1 1217 . . . . . . . . . . . . . . 15 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
29 nominmo 27759 . . . . . . . . . . . . . . 15 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3028, 29syl 17 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
31 reu5 3380 . . . . . . . . . . . . . 14 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3225, 30, 31sylanbrc 583 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
33 riota1 7409 . . . . . . . . . . . . 13 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3527, 34mpbid 232 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
3635dmeqd 5919 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = dom 𝑥)
3736opeq1d 4884 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩ = ⟨dom 𝑥, 1o⟩)
3837sneqd 4643 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {⟨dom 𝑥, 1o⟩})
3935, 38uneq12d 4179 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4026, 39eqtrd 2775 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
412, 40eqtrid 2787 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4241dmeqd 5919 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
43 1oex 8515 . . . . . . . . . . . . 13 1o ∈ V
4443dmsnop 6238 . . . . . . . . . . . 12 dom {⟨dom 𝑥, 1o⟩} = {dom 𝑥}
4544uneq2i 4175 . . . . . . . . . . 11 (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ {dom 𝑥})
46 dmun 5924 . . . . . . . . . . 11 dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩})
47 df-suc 6392 . . . . . . . . . . 11 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
4845, 46, 473eqtr4ri 2774 . . . . . . . . . 10 suc dom 𝑥 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩})
4942, 48eqtr4di 2793 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = suc dom 𝑥)
5049reseq2d 6000 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) = (𝑍 ↾ suc dom 𝑥))
5141, 50breq12d 5161 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 <s (𝑍 ↾ dom 𝑇) ↔ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥)))
5223, 51mtbird 325 . . . . . 6 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
5352exp31 419 . . . . 5 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))))
5421, 53rexlimi 3257 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
5554imp 406 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
56 simprl3 1219 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑍 No )
572noinfno 27778 . . . . . . . . 9 ((𝐵 No 𝐵𝑉) → 𝑇 No )
58573adant3 1131 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → 𝑇 No )
5958ad2antrl 728 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 No )
60 nodmon 27710 . . . . . . 7 (𝑇 No → dom 𝑇 ∈ On)
6159, 60syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 ∈ On)
62 noreson 27720 . . . . . 6 ((𝑍 No ∧ dom 𝑇 ∈ On) → (𝑍 ↾ dom 𝑇) ∈ No )
6356, 61, 62syl2anc 584 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) ∈ No )
64 nofun 27709 . . . . . . . . 9 (𝑇 No → Fun 𝑇)
65 funrel 6585 . . . . . . . . 9 (Fun 𝑇 → Rel 𝑇)
6658, 64, 653syl 18 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → Rel 𝑇)
6766ad2antrl 728 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → Rel 𝑇)
68 resdm 6046 . . . . . . 7 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
6967, 68syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) = 𝑇)
7069, 59eqeltrd 2839 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) ∈ No )
71 resdmss 6257 . . . . . 6 dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇
7271a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇)
73 resdmss 6257 . . . . . 6 dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇
7473a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇)
752noinfdm 27779 . . . . . . . . . . 11 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑔 ∣ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
7675eqabrd 2882 . . . . . . . . . 10 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
7776adantr 480 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
78 simpll 767 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
79 simprl1 1217 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
8079adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵 No )
81 simprl2 1218 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵𝑉)
8281adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵𝑉)
83 simprl 771 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐵)
84 simprrl 781 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
85 simprrr 782 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
86 breq2 5152 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
8786notbid 318 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
88 reseq1 5994 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑞 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))
8988eqeq2d 2746 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → ((𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9087, 89imbi12d 344 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
9190cbvralvw 3235 . . . . . . . . . . . . 13 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9285, 91sylib 218 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
932noinfres 27782 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
9478, 80, 82, 83, 84, 92, 93syl123anc 1386 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
95 breq2 5152 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑍 <s 𝑏𝑍 <s 𝑝))
96 simplrr 778 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑏𝐵 𝑍 <s 𝑏)
9795, 96, 83rspcdva 3623 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 <s 𝑝)
9856adantr 480 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
9980, 83sseldd 3996 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
100 sltso 27736 . . . . . . . . . . . . . . 15 <s Or No
101 soasym 5629 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑍 No 𝑝 No )) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
102100, 101mpan 690 . . . . . . . . . . . . . 14 ((𝑍 No 𝑝 No ) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10398, 99, 102syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10497, 103mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑝 <s 𝑍)
105 nodmon 27710 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10699, 105syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
107 onelon 6411 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
108106, 84, 107syl2anc 584 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
109 onsucb 7837 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
110108, 109sylib 218 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
111 sltres 27722 . . . . . . . . . . . . 13 ((𝑝 No 𝑍 No ∧ suc 𝑔 ∈ On) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
11299, 98, 110, 111syl3anc 1370 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
113104, 112mtod 198 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
11494, 113eqnbrtrd 5166 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
115114rexlimdvaa 3154 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
11677, 115sylbid 240 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
117116imp 406 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
118 nodmord 27713 . . . . . . . . . . 11 (𝑇 No → Ord dom 𝑇)
119 ordsucss 7838 . . . . . . . . . . 11 (Ord dom 𝑇 → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
12059, 118, 1193syl 18 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
121120imp 406 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → suc 𝑔 ⊆ dom 𝑇)
122121resabs1d 6028 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑇 ↾ suc 𝑔))
123121resabs1d 6028 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
124122, 123breq12d 5161 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → (((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) ↔ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
125117, 124mtbird 325 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
126125ralrimiva 3144 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
127 noresle 27757 . . . . 5 ((((𝑍 ↾ dom 𝑇) ∈ No ∧ (𝑇 ↾ dom 𝑇) ∈ No ) ∧ (dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12863, 70, 72, 74, 126, 127syl23anc 1376 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12969breq1d 5158 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇) ↔ 𝑇 <s (𝑍 ↾ dom 𝑇)))
130128, 129mtbid 324 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
13155, 130pm2.61ian 812 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
132 simplr 769 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
133 simpll1 1211 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵 No )
134 simpll2 1212 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵𝑉)
135 simpr 484 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏𝐵)
1362noinfbnd1 27789 . . . . . 6 ((𝐵 No 𝐵𝑉𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
137133, 134, 135, 136syl3anc 1370 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
138 simpl3 1192 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑍 No )
139 simpl1 1190 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵 No )
140 simpl2 1191 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵𝑉)
141139, 140, 57syl2anc 584 . . . . . . . . 9 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑇 No )
142141, 60syl 17 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → dom 𝑇 ∈ On)
143138, 142, 62syl2anc 584 . . . . . . 7 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) ∈ No )
144143adantr 480 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) ∈ No )
145141adantr 480 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 No )
146139sselda 3995 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏 No )
147142adantr 480 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → dom 𝑇 ∈ On)
148 noreson 27720 . . . . . . 7 ((𝑏 No ∧ dom 𝑇 ∈ On) → (𝑏 ↾ dom 𝑇) ∈ No )
149146, 147, 148syl2anc 584 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑏 ↾ dom 𝑇) ∈ No )
150 sotr2 5630 . . . . . . 7 (( <s Or No ∧ ((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No )) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
151100, 150mpan 690 . . . . . 6 (((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No ) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
152144, 145, 149, 151syl3anc 1370 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
153132, 137, 152mp2and 699 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇))
154 simpll3 1213 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 No )
155 sltres 27722 . . . . 5 ((𝑍 No 𝑏 No ∧ dom 𝑇 ∈ On) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
156154, 146, 147, 155syl3anc 1370 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
157153, 156mpd 15 . . 3 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 <s 𝑏)
158157ralrimiva 3144 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → ∀𝑏𝐵 𝑍 <s 𝑏)
159131, 158impbida 801 1 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  ∃!wreu 3376  ∃*wrmo 3377  cun 3961  wss 3963  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   Or wor 5596  dom cdm 5689  cres 5691  Rel wrel 5694  Ord word 6385  Oncon0 6386  suc csuc 6388  cio 6514  Fun wfun 6557  cfv 6563  crio 7387  1oc1o 8498   No csur 27699   <s cslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704
This theorem is referenced by:  nosupinfsep  27792  noetainflem4  27800
  Copyright terms: Public domain W3C validator