MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd2 Structured version   Visualization version   GIF version

Theorem noinfbnd2 27676
Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd2.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd2 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Distinct variable groups:   𝐵,𝑏,𝑔,𝑣,𝑥,𝑦   𝑢,𝐵,𝑔,𝑣,𝑥,𝑦   𝑇,𝑏,𝑔   𝑍,𝑏,𝑔,𝑥   𝑉,𝑏,𝑔,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑥((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)
2 noinfbnd2.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 nfre1 3260 . . . . . . . . . 10 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥
4 nfriota1 7333 . . . . . . . . . . 11 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
54nfdm 5904 . . . . . . . . . . . . 13 𝑥dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
6 nfcv 2891 . . . . . . . . . . . . 13 𝑥1o
75, 6nfop 4849 . . . . . . . . . . . 12 𝑥⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o
87nfsn 4667 . . . . . . . . . . 11 𝑥{⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}
94, 8nfun 4129 . . . . . . . . . 10 𝑥((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
10 nfcv 2891 . . . . . . . . . . 11 𝑥{𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
11 nfiota1 6454 . . . . . . . . . . 11 𝑥(℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1210, 11nfmpt 5200 . . . . . . . . . 10 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
133, 9, 12nfif 4515 . . . . . . . . 9 𝑥if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
142, 13nfcxfr 2889 . . . . . . . 8 𝑥𝑇
15 nfcv 2891 . . . . . . . 8 𝑥 <s
16 nfcv 2891 . . . . . . . . 9 𝑥𝑍
1714nfdm 5904 . . . . . . . . 9 𝑥dom 𝑇
1816, 17nfres 5941 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑇)
1914, 15, 18nfbr 5149 . . . . . . 7 𝑥 𝑇 <s (𝑍 ↾ dom 𝑇)
2019nfn 1857 . . . . . 6 𝑥 ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)
211, 20nfim 1896 . . . . 5 𝑥(((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
22 noinfbnd2lem1 27675 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
23223expb 1120 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
24 rspe 3225 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2524adantr 480 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2625iftrued 4492 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
27 simpl 482 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
28 simprl1 1219 . . . . . . . . . . . . . . 15 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
29 nominmo 27644 . . . . . . . . . . . . . . 15 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3028, 29syl 17 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
31 reu5 3353 . . . . . . . . . . . . . 14 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3225, 30, 31sylanbrc 583 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
33 riota1 7347 . . . . . . . . . . . . 13 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3527, 34mpbid 232 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
3635dmeqd 5859 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = dom 𝑥)
3736opeq1d 4839 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩ = ⟨dom 𝑥, 1o⟩)
3837sneqd 4597 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {⟨dom 𝑥, 1o⟩})
3935, 38uneq12d 4128 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4026, 39eqtrd 2764 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
412, 40eqtrid 2776 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4241dmeqd 5859 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
43 1oex 8421 . . . . . . . . . . . . 13 1o ∈ V
4443dmsnop 6177 . . . . . . . . . . . 12 dom {⟨dom 𝑥, 1o⟩} = {dom 𝑥}
4544uneq2i 4124 . . . . . . . . . . 11 (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ {dom 𝑥})
46 dmun 5864 . . . . . . . . . . 11 dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩})
47 df-suc 6326 . . . . . . . . . . 11 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
4845, 46, 473eqtr4ri 2763 . . . . . . . . . 10 suc dom 𝑥 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩})
4942, 48eqtr4di 2782 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = suc dom 𝑥)
5049reseq2d 5939 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) = (𝑍 ↾ suc dom 𝑥))
5141, 50breq12d 5115 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 <s (𝑍 ↾ dom 𝑇) ↔ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥)))
5223, 51mtbird 325 . . . . . 6 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
5352exp31 419 . . . . 5 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))))
5421, 53rexlimi 3235 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
5554imp 406 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
56 simprl3 1221 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑍 No )
572noinfno 27663 . . . . . . . . 9 ((𝐵 No 𝐵𝑉) → 𝑇 No )
58573adant3 1132 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → 𝑇 No )
5958ad2antrl 728 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 No )
60 nodmon 27595 . . . . . . 7 (𝑇 No → dom 𝑇 ∈ On)
6159, 60syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 ∈ On)
62 noreson 27605 . . . . . 6 ((𝑍 No ∧ dom 𝑇 ∈ On) → (𝑍 ↾ dom 𝑇) ∈ No )
6356, 61, 62syl2anc 584 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) ∈ No )
64 nofun 27594 . . . . . . . . 9 (𝑇 No → Fun 𝑇)
65 funrel 6517 . . . . . . . . 9 (Fun 𝑇 → Rel 𝑇)
6658, 64, 653syl 18 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → Rel 𝑇)
6766ad2antrl 728 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → Rel 𝑇)
68 resdm 5986 . . . . . . 7 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
6967, 68syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) = 𝑇)
7069, 59eqeltrd 2828 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) ∈ No )
71 resdmss 6196 . . . . . 6 dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇
7271a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇)
73 resdmss 6196 . . . . . 6 dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇
7473a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇)
752noinfdm 27664 . . . . . . . . . . 11 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑔 ∣ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
7675eqabrd 2870 . . . . . . . . . 10 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
7776adantr 480 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
78 simpll 766 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
79 simprl1 1219 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
8079adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵 No )
81 simprl2 1220 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵𝑉)
8281adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵𝑉)
83 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐵)
84 simprrl 780 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
85 simprrr 781 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
86 breq2 5106 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
8786notbid 318 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
88 reseq1 5933 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑞 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))
8988eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → ((𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9087, 89imbi12d 344 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
9190cbvralvw 3213 . . . . . . . . . . . . 13 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9285, 91sylib 218 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
932noinfres 27667 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
9478, 80, 82, 83, 84, 92, 93syl123anc 1389 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
95 breq2 5106 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑍 <s 𝑏𝑍 <s 𝑝))
96 simplrr 777 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑏𝐵 𝑍 <s 𝑏)
9795, 96, 83rspcdva 3586 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 <s 𝑝)
9856adantr 480 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
9980, 83sseldd 3944 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
100 sltso 27621 . . . . . . . . . . . . . . 15 <s Or No
101 soasym 5572 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑍 No 𝑝 No )) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
102100, 101mpan 690 . . . . . . . . . . . . . 14 ((𝑍 No 𝑝 No ) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10398, 99, 102syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10497, 103mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑝 <s 𝑍)
105 nodmon 27595 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10699, 105syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
107 onelon 6345 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
108106, 84, 107syl2anc 584 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
109 onsucb 7772 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
110108, 109sylib 218 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
111 sltres 27607 . . . . . . . . . . . . 13 ((𝑝 No 𝑍 No ∧ suc 𝑔 ∈ On) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
11299, 98, 110, 111syl3anc 1373 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
113104, 112mtod 198 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
11494, 113eqnbrtrd 5120 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
115114rexlimdvaa 3135 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
11677, 115sylbid 240 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
117116imp 406 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
118 nodmord 27598 . . . . . . . . . . 11 (𝑇 No → Ord dom 𝑇)
119 ordsucss 7773 . . . . . . . . . . 11 (Ord dom 𝑇 → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
12059, 118, 1193syl 18 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
121120imp 406 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → suc 𝑔 ⊆ dom 𝑇)
122121resabs1d 5968 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑇 ↾ suc 𝑔))
123121resabs1d 5968 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
124122, 123breq12d 5115 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → (((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) ↔ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
125117, 124mtbird 325 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
126125ralrimiva 3125 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
127 noresle 27642 . . . . 5 ((((𝑍 ↾ dom 𝑇) ∈ No ∧ (𝑇 ↾ dom 𝑇) ∈ No ) ∧ (dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12863, 70, 72, 74, 126, 127syl23anc 1379 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12969breq1d 5112 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇) ↔ 𝑇 <s (𝑍 ↾ dom 𝑇)))
130128, 129mtbid 324 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
13155, 130pm2.61ian 811 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
132 simplr 768 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
133 simpll1 1213 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵 No )
134 simpll2 1214 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵𝑉)
135 simpr 484 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏𝐵)
1362noinfbnd1 27674 . . . . . 6 ((𝐵 No 𝐵𝑉𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
137133, 134, 135, 136syl3anc 1373 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
138 simpl3 1194 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑍 No )
139 simpl1 1192 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵 No )
140 simpl2 1193 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵𝑉)
141139, 140, 57syl2anc 584 . . . . . . . . 9 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑇 No )
142141, 60syl 17 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → dom 𝑇 ∈ On)
143138, 142, 62syl2anc 584 . . . . . . 7 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) ∈ No )
144143adantr 480 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) ∈ No )
145141adantr 480 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 No )
146139sselda 3943 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏 No )
147142adantr 480 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → dom 𝑇 ∈ On)
148 noreson 27605 . . . . . . 7 ((𝑏 No ∧ dom 𝑇 ∈ On) → (𝑏 ↾ dom 𝑇) ∈ No )
149146, 147, 148syl2anc 584 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑏 ↾ dom 𝑇) ∈ No )
150 sotr2 5573 . . . . . . 7 (( <s Or No ∧ ((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No )) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
151100, 150mpan 690 . . . . . 6 (((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No ) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
152144, 145, 149, 151syl3anc 1373 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
153132, 137, 152mp2and 699 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇))
154 simpll3 1215 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 No )
155 sltres 27607 . . . . 5 ((𝑍 No 𝑏 No ∧ dom 𝑇 ∈ On) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
156154, 146, 147, 155syl3anc 1373 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
157153, 156mpd 15 . . 3 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 <s 𝑏)
158157ralrimiva 3125 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → ∀𝑏𝐵 𝑍 <s 𝑏)
159131, 158impbida 800 1 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  ∃!wreu 3349  ∃*wrmo 3350  cun 3909  wss 3911  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183   Or wor 5538  dom cdm 5631  cres 5633  Rel wrel 5636  Ord word 6319  Oncon0 6320  suc csuc 6322  cio 6450  Fun wfun 6493  cfv 6499  crio 7325  1oc1o 8404   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  nosupinfsep  27677  noetainflem4  27685
  Copyright terms: Public domain W3C validator