Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd2 Structured version   Visualization version   GIF version

Theorem noinfbnd2 33519
Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd2.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd2 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Distinct variable groups:   𝐵,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑇,𝑏,𝑔   𝑣,𝑢,𝑥,𝑦   𝑉,𝑏,𝑔   𝑥,𝑣   𝑥,𝑉   𝑦,𝑣,𝑥   𝑍,𝑏,𝑔,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . 6 𝑥((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)
2 noinfbnd2.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 nfre1 3230 . . . . . . . . . 10 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥
4 nfriota1 7115 . . . . . . . . . . 11 𝑥(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
54nfdm 5792 . . . . . . . . . . . . 13 𝑥dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
6 nfcv 2919 . . . . . . . . . . . . 13 𝑥1o
75, 6nfop 4779 . . . . . . . . . . . 12 𝑥⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o
87nfsn 4600 . . . . . . . . . . 11 𝑥{⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}
94, 8nfun 4070 . . . . . . . . . 10 𝑥((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
10 nfcv 2919 . . . . . . . . . . 11 𝑥{𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
11 nfiota1 6296 . . . . . . . . . . 11 𝑥(℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1210, 11nfmpt 5129 . . . . . . . . . 10 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
133, 9, 12nfif 4450 . . . . . . . . 9 𝑥if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
142, 13nfcxfr 2917 . . . . . . . 8 𝑥𝑇
15 nfcv 2919 . . . . . . . 8 𝑥 <s
16 nfcv 2919 . . . . . . . . 9 𝑥𝑍
1714nfdm 5792 . . . . . . . . 9 𝑥dom 𝑇
1816, 17nfres 5825 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑇)
1914, 15, 18nfbr 5079 . . . . . . 7 𝑥 𝑇 <s (𝑍 ↾ dom 𝑇)
2019nfn 1858 . . . . . 6 𝑥 ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)
211, 20nfim 1897 . . . . 5 𝑥(((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
22 noinfbnd2lem1 33518 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
23223expb 1117 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥))
24 rspe 3228 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2524adantr 484 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2625iftrued 4428 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
27 simpl 486 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥))
28 simprl1 1215 . . . . . . . . . . . . . . 15 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
29 nominmo 33487 . . . . . . . . . . . . . . 15 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3028, 29syl 17 . . . . . . . . . . . . . 14 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
31 reu5 3340 . . . . . . . . . . . . . 14 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3225, 30, 31sylanbrc 586 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
33 riota1 7129 . . . . . . . . . . . . 13 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ↔ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥))
3527, 34mpbid 235 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = 𝑥)
3635dmeqd 5745 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = dom 𝑥)
3736opeq1d 4769 . . . . . . . . . . . 12 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩ = ⟨dom 𝑥, 1o⟩)
3837sneqd 4534 . . . . . . . . . . 11 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {⟨dom 𝑥, 1o⟩})
3935, 38uneq12d 4069 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4026, 39eqtrd 2793 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
412, 40syl5eq 2805 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 = (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
4241dmeqd 5745 . . . . . . . . . 10 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}))
43 1oex 8120 . . . . . . . . . . . . 13 1o ∈ V
4443dmsnop 6045 . . . . . . . . . . . 12 dom {⟨dom 𝑥, 1o⟩} = {dom 𝑥}
4544uneq2i 4065 . . . . . . . . . . 11 (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ {dom 𝑥})
46 dmun 5750 . . . . . . . . . . 11 dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 1o⟩})
47 df-suc 6175 . . . . . . . . . . 11 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
4845, 46, 473eqtr4ri 2792 . . . . . . . . . 10 suc dom 𝑥 = dom (𝑥 ∪ {⟨dom 𝑥, 1o⟩})
4942, 48eqtr4di 2811 . . . . . . . . 9 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 = suc dom 𝑥)
5049reseq2d 5823 . . . . . . . 8 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) = (𝑍 ↾ suc dom 𝑥))
5141, 50breq12d 5045 . . . . . . 7 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 <s (𝑍 ↾ dom 𝑇) ↔ (𝑥 ∪ {⟨dom 𝑥, 1o⟩}) <s (𝑍 ↾ suc dom 𝑥)))
5223, 51mtbird 328 . . . . . 6 (((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑥) ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
5352exp31 423 . . . . 5 (𝑥𝐵 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))))
5421, 53rexlimi 3239 . . . 4 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
5554imp 410 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
56 simprl3 1217 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑍 No )
572noinfno 33506 . . . . . . . . 9 ((𝐵 No 𝐵𝑉) → 𝑇 No )
58573adant3 1129 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → 𝑇 No )
5958ad2antrl 727 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝑇 No )
60 nodmon 33438 . . . . . . 7 (𝑇 No → dom 𝑇 ∈ On)
6159, 60syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom 𝑇 ∈ On)
62 noreson 33448 . . . . . 6 ((𝑍 No ∧ dom 𝑇 ∈ On) → (𝑍 ↾ dom 𝑇) ∈ No )
6356, 61, 62syl2anc 587 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑍 ↾ dom 𝑇) ∈ No )
64 nofun 33437 . . . . . . . . 9 (𝑇 No → Fun 𝑇)
65 funrel 6352 . . . . . . . . 9 (Fun 𝑇 → Rel 𝑇)
6658, 64, 653syl 18 . . . . . . . 8 ((𝐵 No 𝐵𝑉𝑍 No ) → Rel 𝑇)
6766ad2antrl 727 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → Rel 𝑇)
68 resdm 5868 . . . . . . 7 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
6967, 68syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) = 𝑇)
7069, 59eqeltrd 2852 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑇 ↾ dom 𝑇) ∈ No )
71 resdmss 6064 . . . . . 6 dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇
7271a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇)
73 resdmss 6064 . . . . . 6 dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇
7473a1i 11 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇)
752noinfdm 33507 . . . . . . . . . . 11 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑔 ∣ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
7675abeq2d 2886 . . . . . . . . . 10 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
7776adantr 484 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
78 simpll 766 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
79 simprl1 1215 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵 No )
8079adantr 484 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵 No )
81 simprl2 1216 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → 𝐵𝑉)
8281adantr 484 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐵𝑉)
83 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐵)
84 simprrl 780 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
85 simprrr 781 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
86 breq2 5036 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
8786notbid 321 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
88 reseq1 5817 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑣 → (𝑞 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))
8988eqeq2d 2769 . . . . . . . . . . . . . . 15 (𝑞 = 𝑣 → ((𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9087, 89imbi12d 348 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
9190cbvralvw 3361 . . . . . . . . . . . . 13 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
9285, 91sylib 221 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
932noinfres 33510 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
9478, 80, 82, 83, 84, 92, 93syl123anc 1384 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑇 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
95 breq2 5036 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑍 <s 𝑏𝑍 <s 𝑝))
96 simplrr 777 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑏𝐵 𝑍 <s 𝑏)
9795, 96, 83rspcdva 3543 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 <s 𝑝)
9856adantr 484 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
9980, 83sseldd 3893 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
100 sltso 33464 . . . . . . . . . . . . . . 15 <s Or No
101 soasym 5473 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑍 No 𝑝 No )) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
102100, 101mpan 689 . . . . . . . . . . . . . 14 ((𝑍 No 𝑝 No ) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10398, 99, 102syl2anc 587 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍))
10497, 103mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑝 <s 𝑍)
105 nodmon 33438 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10699, 105syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
107 onelon 6194 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
108106, 84, 107syl2anc 587 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
109 sucelon 7531 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
110108, 109sylib 221 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
111 sltres 33450 . . . . . . . . . . . . 13 ((𝑝 No 𝑍 No ∧ suc 𝑔 ∈ On) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
11299, 98, 110, 111syl3anc 1368 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔) → 𝑝 <s 𝑍))
113104, 112mtod 201 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑝 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
11494, 113eqnbrtrd 5050 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ (𝑝𝐵 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
115114rexlimdvaa 3209 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (∃𝑝𝐵 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
11677, 115sylbid 243 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
117116imp 410 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔))
118 nodmord 33441 . . . . . . . . . . 11 (𝑇 No → Ord dom 𝑇)
119 ordsucss 7532 . . . . . . . . . . 11 (Ord dom 𝑇 → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
12059, 118, 1193syl 18 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → (𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇))
121120imp 410 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → suc 𝑔 ⊆ dom 𝑇)
122121resabs1d 5854 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑇 ↾ suc 𝑔))
123121resabs1d 5854 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
124122, 123breq12d 5045 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → (((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔) ↔ (𝑇 ↾ suc 𝑔) <s (𝑍 ↾ suc 𝑔)))
125117, 124mtbird 328 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) ∧ 𝑔 ∈ dom 𝑇) → ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
126125ralrimiva 3113 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))
127 noresle 33485 . . . . 5 ((((𝑍 ↾ dom 𝑇) ∈ No ∧ (𝑇 ↾ dom 𝑇) ∈ No ) ∧ (dom (𝑍 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ dom (𝑇 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀𝑔 ∈ dom 𝑇 ¬ ((𝑇 ↾ dom 𝑇) ↾ suc 𝑔) <s ((𝑍 ↾ dom 𝑇) ↾ suc 𝑔))) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12863, 70, 72, 74, 126, 127syl23anc 1374 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ (𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇))
12969breq1d 5042 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ((𝑇 ↾ dom 𝑇) <s (𝑍 ↾ dom 𝑇) ↔ 𝑇 <s (𝑍 ↾ dom 𝑇)))
130128, 129mtbid 327 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏)) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
13155, 130pm2.61ian 811 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
132 simplr 768 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))
133 simpll1 1209 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵 No )
134 simpll2 1210 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝐵𝑉)
135 simpr 488 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏𝐵)
1362noinfbnd1 33517 . . . . . 6 ((𝐵 No 𝐵𝑉𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
137133, 134, 135, 136syl3anc 1368 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 <s (𝑏 ↾ dom 𝑇))
138 simpl3 1190 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑍 No )
139 simpl1 1188 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵 No )
140 simpl2 1189 . . . . . . . . . 10 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝐵𝑉)
141139, 140, 57syl2anc 587 . . . . . . . . 9 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → 𝑇 No )
142141, 60syl 17 . . . . . . . 8 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → dom 𝑇 ∈ On)
143138, 142, 62syl2anc 587 . . . . . . 7 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) ∈ No )
144143adantr 484 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) ∈ No )
145141adantr 484 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑇 No )
146139sselda 3892 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑏 No )
147142adantr 484 . . . . . . 7 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → dom 𝑇 ∈ On)
148 noreson 33448 . . . . . . 7 ((𝑏 No ∧ dom 𝑇 ∈ On) → (𝑏 ↾ dom 𝑇) ∈ No )
149146, 147, 148syl2anc 587 . . . . . 6 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑏 ↾ dom 𝑇) ∈ No )
150 sotr2 5474 . . . . . . 7 (( <s Or No ∧ ((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No )) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
151100, 150mpan 689 . . . . . 6 (((𝑍 ↾ dom 𝑇) ∈ No 𝑇 No ∧ (𝑏 ↾ dom 𝑇) ∈ No ) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
152144, 145, 149, 151syl3anc 1368 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((¬ 𝑇 <s (𝑍 ↾ dom 𝑇) ∧ 𝑇 <s (𝑏 ↾ dom 𝑇)) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇)))
153132, 137, 152mp2and 698 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → (𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇))
154 simpll3 1211 . . . . 5 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 No )
155 sltres 33450 . . . . 5 ((𝑍 No 𝑏 No ∧ dom 𝑇 ∈ On) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
156154, 146, 147, 155syl3anc 1368 . . . 4 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → ((𝑍 ↾ dom 𝑇) <s (𝑏 ↾ dom 𝑇) → 𝑍 <s 𝑏))
157153, 156mpd 15 . . 3 ((((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) ∧ 𝑏𝐵) → 𝑍 <s 𝑏)
158157ralrimiva 3113 . 2 (((𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)) → ∀𝑏𝐵 𝑍 <s 𝑏)
159131, 158impbida 800 1 ((𝐵 No 𝐵𝑉𝑍 No ) → (∀𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  ∃!wreu 3072  ∃*wrmo 3073  cun 3856  wss 3858  ifcif 4420  {csn 4522  cop 4528   class class class wbr 5032  cmpt 5112   Or wor 5442  dom cdm 5524  cres 5526  Rel wrel 5529  Ord word 6168  Oncon0 6169  suc csuc 6171  cio 6292  Fun wfun 6329  cfv 6335  crio 7107  1oc1o 8105   No csur 33428   <s cslt 33429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-1o 8112  df-2o 8113  df-no 33431  df-slt 33432  df-bday 33433
This theorem is referenced by:  nosupinfsep  33520  noetainflem4  33528
  Copyright terms: Public domain W3C validator