Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
2 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑍 |
3 | | nosupbnd2.1 |
. . . . . . . . . . 11
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
4 | | nfre1 3234 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 |
5 | | nfriota1 7219 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
6 | 5 | nfdm 5849 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
7 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥2o |
8 | 6, 7 | nfop 4817 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉 |
9 | 8 | nfsn 4640 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} |
10 | 5, 9 | nfun 4095 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
11 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
12 | | nfiota1 6378 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
13 | 11, 12 | nfmpt 5177 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
14 | 4, 10, 13 | nfif 4486 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
15 | 3, 14 | nfcxfr 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑆 |
16 | 15 | nfdm 5849 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
𝑆 |
17 | 2, 16 | nfres 5882 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑍 ↾ dom 𝑆) |
18 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥
<s |
19 | 17, 18, 15 | nfbr 5117 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑍 ↾ dom 𝑆) <s 𝑆 |
20 | 19 | nfn 1861 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
(𝑍 ↾ dom 𝑆) <s 𝑆 |
21 | 1, 20 | nfim 1900 |
. . . . 5
⊢
Ⅎ𝑥(((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
22 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
23 | | rspe 3232 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
24 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
25 | | nomaxmo 33828 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → ∃*𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
26 | 25 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
27 | 26 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
28 | | reu5 3351 |
. . . . . . . . . . 11
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
29 | 24, 27, 28 | sylanbrc 582 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
30 | | riota1 7234 |
. . . . . . . . . 10
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
32 | 22, 31 | mpbid 231 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥) |
33 | | nosupbnd2lem1 33845 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉})) |
34 | 33 | 3expb 1118 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉})) |
35 | | dmeq 5801 |
. . . . . . . . . . . . 13
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥) |
36 | | suceq 6316 |
. . . . . . . . . . . . 13
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥 → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥) |
38 | 37 | reseq2d 5880 |
. . . . . . . . . . 11
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = (𝑍 ↾ suc dom 𝑥)) |
39 | | id 22 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥) |
40 | 35 | opeq1d 4807 |
. . . . . . . . . . . . 13
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → 〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉 = 〈dom 𝑥,
2o〉) |
41 | 40 | sneqd 4570 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {〈dom 𝑥,
2o〉}) |
42 | 39, 41 | uneq12d 4094 |
. . . . . . . . . . 11
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (𝑥 ∪ {〈dom 𝑥,
2o〉})) |
43 | 38, 42 | breq12d 5083 |
. . . . . . . . . 10
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ↔ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉}))) |
44 | 43 | notbid 317 |
. . . . . . . . 9
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ↔ ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉}))) |
45 | 34, 44 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
46 | 32, 45 | mpd 15 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
47 | | iftrue 4462 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
48 | 3, 47 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
49 | 23, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
50 | 49 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = dom ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
51 | | 2on 8275 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ On |
52 | 51 | elexi 3441 |
. . . . . . . . . . . . . 14
⊢
2o ∈ V |
53 | 52 | dmsnop 6108 |
. . . . . . . . . . . . 13
⊢ dom
{〈dom (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)} |
54 | 53 | uneq2i 4090 |
. . . . . . . . . . . 12
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
55 | | dmun 5808 |
. . . . . . . . . . . 12
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
56 | | df-suc 6257 |
. . . . . . . . . . . 12
⊢ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = (dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
57 | 54, 55, 56 | 3eqtr4i 2776 |
. . . . . . . . . . 11
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
58 | 50, 57 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
59 | 58 | reseq2d 5880 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
60 | 59 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
61 | 49 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
62 | 60, 61 | breq12d 5083 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s 𝑆 ↔ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
63 | 46, 62 | mtbird 324 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
64 | 63 | exp31 419 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))) |
65 | 21, 64 | rexlimi 3243 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)) |
66 | 65 | imp 406 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
67 | 3 | nosupno 33833 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
68 | 67 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → 𝑆 ∈ No
) |
69 | 68 | ad2antrl 724 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑆 ∈ No
) |
70 | | nodmon 33780 |
. . . . . . 7
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom 𝑆 ∈ On) |
72 | | noreson 33790 |
. . . . . 6
⊢ ((𝑆 ∈
No ∧ dom 𝑆
∈ On) → (𝑆
↾ dom 𝑆) ∈ No ) |
73 | 69, 71, 72 | syl2anc 583 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) ∈ No
) |
74 | | simprl3 1218 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑍 ∈ No
) |
75 | | noreson 33790 |
. . . . . 6
⊢ ((𝑍 ∈
No ∧ dom 𝑆
∈ On) → (𝑍
↾ dom 𝑆) ∈ No ) |
76 | 74, 71, 75 | syl2anc 583 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) ∈ No
) |
77 | | dmres 5902 |
. . . . . . 7
⊢ dom
(𝑆 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑆) |
78 | | inss2 4160 |
. . . . . . 7
⊢ (dom
𝑆 ∩ dom 𝑆) ⊆ dom 𝑆 |
79 | 77, 78 | eqsstri 3951 |
. . . . . 6
⊢ dom
(𝑆 ↾ dom 𝑆) ⊆ dom 𝑆 |
80 | 79 | a1i 11 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆) |
81 | | dmres 5902 |
. . . . . . 7
⊢ dom
(𝑍 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑍) |
82 | | inss1 4159 |
. . . . . . 7
⊢ (dom
𝑆 ∩ dom 𝑍) ⊆ dom 𝑆 |
83 | 81, 82 | eqsstri 3951 |
. . . . . 6
⊢ dom
(𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 |
84 | 83 | a1i 11 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆) |
85 | 3 | nosupdm 33834 |
. . . . . . . . . . 11
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑔 ∣ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))}) |
86 | 85 | abeq2d 2873 |
. . . . . . . . . 10
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) |
87 | 86 | adantr 480 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) |
88 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 ∈ 𝐴) |
89 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
90 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑝 → (𝑎 <s 𝑍 ↔ 𝑝 <s 𝑍)) |
91 | 90 | rspcv 3547 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ 𝐴 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑝 <s 𝑍)) |
92 | 88, 89, 91 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 <s 𝑍) |
93 | | simprl1 1216 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝐴 ⊆ No
) |
94 | 93 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐴 ⊆ No
) |
95 | 94, 88 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 ∈ No
) |
96 | 74 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 ∈ No
) |
97 | | sltso 33806 |
. . . . . . . . . . . . . . 15
⊢ <s Or
No |
98 | | soasym 5525 |
. . . . . . . . . . . . . . 15
⊢ (( <s
Or No ∧ (𝑝 ∈ No
∧ 𝑍 ∈ No )) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
99 | 97, 98 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈
No ∧ 𝑍 ∈
No ) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
100 | 95, 96, 99 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
101 | 92, 100 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑍 <s 𝑝) |
102 | | nodmon 33780 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈
No → dom 𝑝
∈ On) |
103 | 95, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On) |
104 | | simprrl 777 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝) |
105 | | onelon 6276 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On) |
106 | 103, 104,
105 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On) |
107 | | sucelon 7639 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ On ↔ suc 𝑔 ∈ On) |
108 | 106, 107 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On) |
109 | | sltres 33792 |
. . . . . . . . . . . . 13
⊢ ((𝑍 ∈
No ∧ 𝑝 ∈
No ∧ suc 𝑔 ∈ On) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝)) |
110 | 96, 95, 108, 109 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝)) |
111 | 101, 110 | mtod 197 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔)) |
112 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
113 | | simprl2 1217 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝐴 ∈ V) |
114 | 93, 113 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
115 | 114 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
116 | | simprrr 778 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
117 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑞 → (𝑣 <s 𝑝 ↔ 𝑞 <s 𝑝)) |
118 | 117 | notbid 317 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝)) |
119 | | reseq1 5874 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) |
120 | 119 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
121 | 118, 120 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))) |
122 | 121 | cbvralvw 3372 |
. . . . . . . . . . . . . 14
⊢
(∀𝑣 ∈
𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
123 | 116, 122 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) |
124 | 3 | nosupres 33837 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑝 ∈ 𝐴 ∧ 𝑔 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔)) |
125 | 112, 115,
88, 104, 123, 124 | syl113anc 1380 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔)) |
126 | 125 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔))) |
127 | 111, 126 | mtbird 324 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)) |
128 | 127 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
129 | 87, 128 | sylbid 239 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
130 | 129 | imp 406 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)) |
131 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑆 ∈ No
) |
132 | | nodmord 33783 |
. . . . . . . . . . 11
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
133 | 131, 132 | syl 17 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → Ord dom 𝑆) |
134 | | simpr 484 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑔 ∈ dom 𝑆) |
135 | | ordsucss 7640 |
. . . . . . . . . 10
⊢ (Ord dom
𝑆 → (𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆)) |
136 | 133, 134,
135 | sylc 65 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → suc 𝑔 ⊆ dom 𝑆) |
137 | 136 | resabs1d 5911 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔)) |
138 | 136 | resabs1d 5911 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑆 ↾ suc 𝑔)) |
139 | 137, 138 | breq12d 5083 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → (((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
140 | 130, 139 | mtbird 324 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔)) |
141 | 140 | ralrimiva 3107 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔)) |
142 | | noresle 33827 |
. . . . 5
⊢ ((((𝑆 ↾ dom 𝑆) ∈ No
∧ (𝑍 ↾ dom 𝑆) ∈
No ) ∧ (dom (𝑆
↾ dom 𝑆) ⊆ dom
𝑆 ∧ dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆)) |
143 | 73, 76, 80, 84, 141, 142 | syl23anc 1375 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆)) |
144 | | nofun 33779 |
. . . . . . 7
⊢ (𝑆 ∈
No → Fun 𝑆) |
145 | 69, 144 | syl 17 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → Fun 𝑆) |
146 | | funrel 6435 |
. . . . . 6
⊢ (Fun
𝑆 → Rel 𝑆) |
147 | | resdm 5925 |
. . . . . 6
⊢ (Rel
𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆) |
148 | 145, 146,
147 | 3syl 18 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) = 𝑆) |
149 | 148 | breq2d 5082 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆) ↔ (𝑍 ↾ dom 𝑆) <s 𝑆)) |
150 | 143, 149 | mtbid 323 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
151 | 66, 150 | pm2.61ian 808 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
152 | | simpll1 1210 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ No
) |
153 | | simpll2 1211 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ V) |
154 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
155 | 3 | nosupbnd1 33844 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆) |
156 | 152, 153,
154, 155 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆) |
157 | | simplr 765 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
158 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → 𝐴 ⊆ No
) |
159 | 158 | sselda 3917 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ No
) |
160 | 152, 153,
67 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑆 ∈ No
) |
161 | 160, 70 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → dom 𝑆 ∈ On) |
162 | | noreson 33790 |
. . . . . . 7
⊢ ((𝑎 ∈
No ∧ dom 𝑆
∈ On) → (𝑎
↾ dom 𝑆) ∈ No ) |
163 | 159, 161,
162 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) ∈ No
) |
164 | | simpll3 1212 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑍 ∈ No
) |
165 | 164, 161,
75 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑍 ↾ dom 𝑆) ∈ No
) |
166 | | sotr3 33639 |
. . . . . . 7
⊢ (( <s
Or No ∧ ((𝑎 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No ))
→ (((𝑎 ↾ dom
𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
167 | 97, 166 | mpan 686 |
. . . . . 6
⊢ (((𝑎 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No )
→ (((𝑎 ↾ dom
𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
168 | 163, 160,
165, 167 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
169 | 156, 157,
168 | mp2and 695 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)) |
170 | | sltres 33792 |
. . . . 5
⊢ ((𝑎 ∈
No ∧ 𝑍 ∈
No ∧ dom 𝑆 ∈ On) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍)) |
171 | 159, 164,
161, 170 | syl3anc 1369 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍)) |
172 | 169, 171 | mpd 15 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s 𝑍) |
173 | 172 | ralrimiva 3107 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
174 | 151, 173 | impbida 797 |
1
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)) |