MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd2 Structured version   Visualization version   GIF version

Theorem nosupbnd2 27635
Description: Bounding law from above for the surreal supremum. Proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd2 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝑍,𝑎,𝑔,𝑥   𝑆,𝑎,𝑔
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem nosupbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)
2 nfcv 2892 . . . . . . . . 9 𝑥𝑍
3 nosupbnd2.1 . . . . . . . . . . 11 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 nfre1 3263 . . . . . . . . . . . 12 𝑥𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦
5 nfriota1 7354 . . . . . . . . . . . . 13 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
65nfdm 5918 . . . . . . . . . . . . . . 15 𝑥dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nfcv 2892 . . . . . . . . . . . . . . 15 𝑥2o
86, 7nfop 4856 . . . . . . . . . . . . . 14 𝑥⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o
98nfsn 4674 . . . . . . . . . . . . 13 𝑥{⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}
105, 9nfun 4136 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
11 nfcv 2892 . . . . . . . . . . . . 13 𝑥{𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
12 nfiota1 6469 . . . . . . . . . . . . 13 𝑥(℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1311, 12nfmpt 5208 . . . . . . . . . . . 12 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
144, 10, 13nfif 4522 . . . . . . . . . . 11 𝑥if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
153, 14nfcxfr 2890 . . . . . . . . . 10 𝑥𝑆
1615nfdm 5918 . . . . . . . . 9 𝑥dom 𝑆
172, 16nfres 5955 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑆)
18 nfcv 2892 . . . . . . . 8 𝑥 <s
1917, 18, 15nfbr 5157 . . . . . . 7 𝑥(𝑍 ↾ dom 𝑆) <s 𝑆
2019nfn 1857 . . . . . 6 𝑥 ¬ (𝑍 ↾ dom 𝑆) <s 𝑆
211, 20nfim 1896 . . . . 5 𝑥(((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
22 simpl 482 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
23 rspe 3228 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2423adantr 480 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
25 nomaxmo 27617 . . . . . . . . . . . . 13 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26253ad2ant1 1133 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2726ad2antrl 728 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
28 reu5 3358 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
2924, 27, 28sylanbrc 583 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
30 riota1 7368 . . . . . . . . . 10 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3129, 30syl 17 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3222, 31mpbid 232 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
33 nosupbnd2lem1 27634 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2o⟩}))
34333expb 1120 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2o⟩}))
35 dmeq 5870 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥)
3635suceqd 6402 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥)
3736reseq2d 5953 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑍 ↾ suc dom 𝑥))
38 id 22 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
3935opeq1d 4846 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩ = ⟨dom 𝑥, 2o⟩)
4039sneqd 4604 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {⟨dom 𝑥, 2o⟩})
4138, 40uneq12d 4135 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (𝑥 ∪ {⟨dom 𝑥, 2o⟩}))
4237, 41breq12d 5123 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ↔ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2o⟩})))
4342notbid 318 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ↔ ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2o⟩})))
4434, 43syl5ibrcom 247 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
4532, 44mpd 15 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
46 iftrue 4497 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
473, 46eqtrid 2777 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
4823, 47syl 17 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
4948dmeqd 5872 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
50 2on 8450 . . . . . . . . . . . . . . 15 2o ∈ On
5150elexi 3473 . . . . . . . . . . . . . 14 2o ∈ V
5251dmsnop 6192 . . . . . . . . . . . . 13 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
5352uneq2i 4131 . . . . . . . . . . . 12 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
54 dmun 5877 . . . . . . . . . . . 12 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
55 df-suc 6341 . . . . . . . . . . . 12 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
5653, 54, 553eqtr4i 2763 . . . . . . . . . . 11 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5749, 56eqtrdi 2781 . . . . . . . . . 10 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5857reseq2d 5953 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
5958adantr 480 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
6048adantr 480 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
6159, 60breq12d 5123 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s 𝑆 ↔ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
6245, 61mtbird 325 . . . . . 6 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
6362exp31 419 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)))
6421, 63rexlimi 3238 . . . 4 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
6564imp 406 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
663nosupno 27622 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
67663adant3 1132 . . . . . . 7 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → 𝑆 No )
6867ad2antrl 728 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 No )
69 nodmon 27569 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
7068, 69syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom 𝑆 ∈ On)
71 noreson 27579 . . . . . 6 ((𝑆 No ∧ dom 𝑆 ∈ On) → (𝑆 ↾ dom 𝑆) ∈ No )
7268, 70, 71syl2anc 584 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) ∈ No )
73 simprl3 1221 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑍 No )
74 noreson 27579 . . . . . 6 ((𝑍 No ∧ dom 𝑆 ∈ On) → (𝑍 ↾ dom 𝑆) ∈ No )
7573, 70, 74syl2anc 584 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) ∈ No )
76 dmres 5986 . . . . . . 7 dom (𝑆 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑆)
77 inss2 4204 . . . . . . 7 (dom 𝑆 ∩ dom 𝑆) ⊆ dom 𝑆
7876, 77eqsstri 3996 . . . . . 6 dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆
7978a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆)
80 dmres 5986 . . . . . . 7 dom (𝑍 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑍)
81 inss1 4203 . . . . . . 7 (dom 𝑆 ∩ dom 𝑍) ⊆ dom 𝑆
8280, 81eqsstri 3996 . . . . . 6 dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆
8382a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆)
843nosupdm 27623 . . . . . . . . . . 11 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑔 ∣ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
8584eqabrd 2871 . . . . . . . . . 10 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
8685adantr 480 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
87 simprl 770 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐴)
88 simplrr 777 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑎𝐴 𝑎 <s 𝑍)
89 breq1 5113 . . . . . . . . . . . . . . 15 (𝑎 = 𝑝 → (𝑎 <s 𝑍𝑝 <s 𝑍))
9089rspcv 3587 . . . . . . . . . . . . . 14 (𝑝𝐴 → (∀𝑎𝐴 𝑎 <s 𝑍𝑝 <s 𝑍))
9187, 88, 90sylc 65 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 <s 𝑍)
92 simprl1 1219 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 No )
9392adantr 480 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐴 No )
9493, 87sseldd 3950 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
9573adantr 480 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
96 sltso 27595 . . . . . . . . . . . . . . 15 <s Or No
97 soasym 5582 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑝 No 𝑍 No )) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
9896, 97mpan 690 . . . . . . . . . . . . . 14 ((𝑝 No 𝑍 No ) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
9994, 95, 98syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
10091, 99mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑍 <s 𝑝)
101 nodmon 27569 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10294, 101syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
103 simprrl 780 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
104 onelon 6360 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
105102, 103, 104syl2anc 584 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
106 onsucb 7795 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
107105, 106sylib 218 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
108 sltres 27581 . . . . . . . . . . . . 13 ((𝑍 No 𝑝 No ∧ suc 𝑔 ∈ On) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
10995, 94, 107, 108syl3anc 1373 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
110100, 109mtod 198 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔))
111 simpll 766 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
112 simprl2 1220 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 ∈ V)
11392, 112jca 511 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝐴 No 𝐴 ∈ V))
114113adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝐴 No 𝐴 ∈ V))
115 simprrr 781 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
116 breq1 5113 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 <s 𝑝𝑞 <s 𝑝))
117116notbid 318 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝))
118 reseq1 5947 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))
119118eqeq2d 2741 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
120117, 119imbi12d 344 . . . . . . . . . . . . . . 15 (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))
121120cbvralvw 3216 . . . . . . . . . . . . . 14 (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
122115, 121sylibr 234 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
1233nosupres 27626 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑝𝐴𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
124111, 114, 87, 103, 122, 123syl113anc 1384 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
125124breq2d 5122 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔)))
126110, 125mtbird 325 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
127126rexlimdvaa 3136 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
12886, 127sylbid 240 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
129128imp 406 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
13068adantr 480 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑆 No )
131 nodmord 27572 . . . . . . . . . . 11 (𝑆 No → Ord dom 𝑆)
132130, 131syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → Ord dom 𝑆)
133 simpr 484 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑔 ∈ dom 𝑆)
134 ordsucss 7796 . . . . . . . . . 10 (Ord dom 𝑆 → (𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆))
135132, 133, 134sylc 65 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → suc 𝑔 ⊆ dom 𝑆)
136135resabs1d 5982 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
137135resabs1d 5982 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑆 ↾ suc 𝑔))
138136, 137breq12d 5123 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → (((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
139129, 138mtbird 325 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
140139ralrimiva 3126 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
141 noresle 27616 . . . . 5 ((((𝑆 ↾ dom 𝑆) ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) ∧ (dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
14272, 75, 79, 83, 140, 141syl23anc 1379 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
143 nofun 27568 . . . . . 6 (𝑆 No → Fun 𝑆)
144 funrel 6536 . . . . . 6 (Fun 𝑆 → Rel 𝑆)
145 resdm 6000 . . . . . 6 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
14668, 143, 144, 1454syl 19 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) = 𝑆)
147146breq2d 5122 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆) ↔ (𝑍 ↾ dom 𝑆) <s 𝑆))
148142, 147mtbid 324 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
14965, 148pm2.61ian 811 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
150 simpll1 1213 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 No )
151 simpll2 1214 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 ∈ V)
152 simpr 484 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎𝐴)
1533nosupbnd1 27633 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
154150, 151, 152, 153syl3anc 1373 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
155 simplr 768 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
156 simpl1 1192 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → 𝐴 No )
157156sselda 3949 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 No )
158150, 151, 66syl2anc 584 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑆 No )
159158, 69syl 17 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → dom 𝑆 ∈ On)
160 noreson 27579 . . . . . . 7 ((𝑎 No ∧ dom 𝑆 ∈ On) → (𝑎 ↾ dom 𝑆) ∈ No )
161157, 159, 160syl2anc 584 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) ∈ No )
162 simpll3 1215 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑍 No )
163162, 159, 74syl2anc 584 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑍 ↾ dom 𝑆) ∈ No )
164 sotr3 5590 . . . . . . 7 (( <s Or No ∧ ((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No )) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
16596, 164mpan 690 . . . . . 6 (((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
166161, 158, 163, 165syl3anc 1373 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
167154, 155, 166mp2and 699 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
168 sltres 27581 . . . . 5 ((𝑎 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
169157, 162, 159, 168syl3anc 1373 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
170167, 169mpd 15 . . 3 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
171170ralrimiva 3126 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → ∀𝑎𝐴 𝑎 <s 𝑍)
172149, 171impbida 800 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  Vcvv 3450  cun 3915  cin 3916  wss 3917  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  cres 5643  Rel wrel 5646  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465  Fun wfun 6508  cfv 6514  crio 7346  2oc2o 8431   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  nosupinfsep  27651  noetasuplem4  27655
  Copyright terms: Public domain W3C validator