| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
| 2 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑍 |
| 3 | | nosupbnd2.1 |
. . . . . . . . . . 11
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 4 | | nfre1 3271 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 |
| 5 | | nfriota1 7374 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 6 | 5 | nfdm 5936 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 7 | | nfcv 2899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥2o |
| 8 | 6, 7 | nfop 4870 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉 |
| 9 | 8 | nfsn 4688 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} |
| 10 | 5, 9 | nfun 4150 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
| 11 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
| 12 | | nfiota1 6491 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
| 13 | 11, 12 | nfmpt 5224 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
| 14 | 4, 10, 13 | nfif 4536 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 15 | 3, 14 | nfcxfr 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑆 |
| 16 | 15 | nfdm 5936 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
𝑆 |
| 17 | 2, 16 | nfres 5973 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑍 ↾ dom 𝑆) |
| 18 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥
<s |
| 19 | 17, 18, 15 | nfbr 5171 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑍 ↾ dom 𝑆) <s 𝑆 |
| 20 | 19 | nfn 1857 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
(𝑍 ↾ dom 𝑆) <s 𝑆 |
| 21 | 1, 20 | nfim 1896 |
. . . . 5
⊢
Ⅎ𝑥(((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 22 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
| 23 | | rspe 3236 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 25 | | nomaxmo 27667 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → ∃*𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 26 | 25 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 27 | 26 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 28 | | reu5 3366 |
. . . . . . . . . . 11
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
| 29 | 24, 27, 28 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 30 | | riota1 7388 |
. . . . . . . . . 10
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
| 32 | 22, 31 | mpbid 232 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥) |
| 33 | | nosupbnd2lem1 27684 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉})) |
| 34 | 33 | 3expb 1120 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉})) |
| 35 | | dmeq 5888 |
. . . . . . . . . . . . 13
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥) |
| 36 | 35 | suceqd 6425 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥) |
| 37 | 36 | reseq2d 5971 |
. . . . . . . . . . 11
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = (𝑍 ↾ suc dom 𝑥)) |
| 38 | | id 22 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥) |
| 39 | 35 | opeq1d 4860 |
. . . . . . . . . . . . 13
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → 〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉 = 〈dom 𝑥,
2o〉) |
| 40 | 39 | sneqd 4618 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {〈dom 𝑥,
2o〉}) |
| 41 | 38, 40 | uneq12d 4149 |
. . . . . . . . . . 11
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (𝑥 ∪ {〈dom 𝑥,
2o〉})) |
| 42 | 37, 41 | breq12d 5137 |
. . . . . . . . . 10
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ↔ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉}))) |
| 43 | 42 | notbid 318 |
. . . . . . . . 9
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ↔ ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {〈dom 𝑥, 2o〉}))) |
| 44 | 34, 43 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
| 45 | 32, 44 | mpd 15 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 46 | | iftrue 4511 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 47 | 3, 46 | eqtrid 2783 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 48 | 23, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 49 | 48 | dmeqd 5890 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = dom ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 50 | | 2on 8499 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ On |
| 51 | 50 | elexi 3487 |
. . . . . . . . . . . . . 14
⊢
2o ∈ V |
| 52 | 51 | dmsnop 6210 |
. . . . . . . . . . . . 13
⊢ dom
{〈dom (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)} |
| 53 | 52 | uneq2i 4145 |
. . . . . . . . . . . 12
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
| 54 | | dmun 5895 |
. . . . . . . . . . . 12
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
| 55 | | df-suc 6363 |
. . . . . . . . . . . 12
⊢ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = (dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
| 56 | 53, 54, 55 | 3eqtr4i 2769 |
. . . . . . . . . . 11
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 57 | 49, 56 | eqtrdi 2787 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
| 58 | 57 | reseq2d 5971 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
| 59 | 58 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
| 60 | 48 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
| 61 | 59, 60 | breq12d 5137 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s 𝑆 ↔ (𝑍 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
| 62 | 45, 61 | mtbird 325 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 63 | 62 | exp31 419 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))) |
| 64 | 21, 63 | rexlimi 3246 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)) |
| 65 | 64 | imp 406 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 66 | 3 | nosupno 27672 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
| 67 | 66 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → 𝑆 ∈ No
) |
| 68 | 67 | ad2antrl 728 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑆 ∈ No
) |
| 69 | | nodmon 27619 |
. . . . . . 7
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
| 70 | 68, 69 | syl 17 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom 𝑆 ∈ On) |
| 71 | | noreson 27629 |
. . . . . 6
⊢ ((𝑆 ∈
No ∧ dom 𝑆
∈ On) → (𝑆
↾ dom 𝑆) ∈ No ) |
| 72 | 68, 70, 71 | syl2anc 584 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) ∈ No
) |
| 73 | | simprl3 1221 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝑍 ∈ No
) |
| 74 | | noreson 27629 |
. . . . . 6
⊢ ((𝑍 ∈
No ∧ dom 𝑆
∈ On) → (𝑍
↾ dom 𝑆) ∈ No ) |
| 75 | 73, 70, 74 | syl2anc 584 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) ∈ No
) |
| 76 | | dmres 6004 |
. . . . . . 7
⊢ dom
(𝑆 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑆) |
| 77 | | inss2 4218 |
. . . . . . 7
⊢ (dom
𝑆 ∩ dom 𝑆) ⊆ dom 𝑆 |
| 78 | 76, 77 | eqsstri 4010 |
. . . . . 6
⊢ dom
(𝑆 ↾ dom 𝑆) ⊆ dom 𝑆 |
| 79 | 78 | a1i 11 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆) |
| 80 | | dmres 6004 |
. . . . . . 7
⊢ dom
(𝑍 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑍) |
| 81 | | inss1 4217 |
. . . . . . 7
⊢ (dom
𝑆 ∩ dom 𝑍) ⊆ dom 𝑆 |
| 82 | 80, 81 | eqsstri 4010 |
. . . . . 6
⊢ dom
(𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 |
| 83 | 82 | a1i 11 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆) |
| 84 | 3 | nosupdm 27673 |
. . . . . . . . . . 11
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑔 ∣ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))}) |
| 85 | 84 | eqabrd 2878 |
. . . . . . . . . 10
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) |
| 86 | 85 | adantr 480 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) |
| 87 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 ∈ 𝐴) |
| 88 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
| 89 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑝 → (𝑎 <s 𝑍 ↔ 𝑝 <s 𝑍)) |
| 90 | 89 | rspcv 3602 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ 𝐴 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑝 <s 𝑍)) |
| 91 | 87, 88, 90 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 <s 𝑍) |
| 92 | | simprl1 1219 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝐴 ⊆ No
) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐴 ⊆ No
) |
| 94 | 93, 87 | sseldd 3964 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 ∈ No
) |
| 95 | 73 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 ∈ No
) |
| 96 | | sltso 27645 |
. . . . . . . . . . . . . . 15
⊢ <s Or
No |
| 97 | | soasym 5599 |
. . . . . . . . . . . . . . 15
⊢ (( <s
Or No ∧ (𝑝 ∈ No
∧ 𝑍 ∈ No )) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
| 98 | 96, 97 | mpan 690 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈
No ∧ 𝑍 ∈
No ) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
| 99 | 94, 95, 98 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝)) |
| 100 | 91, 99 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑍 <s 𝑝) |
| 101 | | nodmon 27619 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈
No → dom 𝑝
∈ On) |
| 102 | 94, 101 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On) |
| 103 | | simprrl 780 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝) |
| 104 | | onelon 6382 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On) |
| 105 | 102, 103,
104 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On) |
| 106 | | onsucb 7816 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ On ↔ suc 𝑔 ∈ On) |
| 107 | 105, 106 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On) |
| 108 | | sltres 27631 |
. . . . . . . . . . . . 13
⊢ ((𝑍 ∈
No ∧ 𝑝 ∈
No ∧ suc 𝑔 ∈ On) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝)) |
| 109 | 95, 94, 107, 108 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝)) |
| 110 | 100, 109 | mtod 198 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔)) |
| 111 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 112 | | simprl2 1220 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → 𝐴 ∈ V) |
| 113 | 92, 112 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
| 115 | | simprrr 781 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
| 116 | | breq1 5127 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑞 → (𝑣 <s 𝑝 ↔ 𝑞 <s 𝑝)) |
| 117 | 116 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝)) |
| 118 | | reseq1 5965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)) |
| 119 | 118 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
| 120 | 117, 119 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))) |
| 121 | 120 | cbvralvw 3224 |
. . . . . . . . . . . . . 14
⊢
(∀𝑣 ∈
𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) |
| 122 | 115, 121 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) |
| 123 | 3 | nosupres 27676 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑝 ∈ 𝐴 ∧ 𝑔 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔)) |
| 124 | 111, 114,
87, 103, 122, 123 | syl113anc 1384 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔)) |
| 125 | 124 | breq2d 5136 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔))) |
| 126 | 110, 125 | mtbird 325 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)) |
| 127 | 126 | rexlimdvaa 3143 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (∃𝑝 ∈ 𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
| 128 | 86, 127 | sylbid 240 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
| 129 | 128 | imp 406 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)) |
| 130 | 68 | adantr 480 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑆 ∈ No
) |
| 131 | | nodmord 27622 |
. . . . . . . . . . 11
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → Ord dom 𝑆) |
| 133 | | simpr 484 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑔 ∈ dom 𝑆) |
| 134 | | ordsucss 7817 |
. . . . . . . . . 10
⊢ (Ord dom
𝑆 → (𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆)) |
| 135 | 132, 133,
134 | sylc 65 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → suc 𝑔 ⊆ dom 𝑆) |
| 136 | 135 | resabs1d 6000 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔)) |
| 137 | 135 | resabs1d 6000 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑆 ↾ suc 𝑔)) |
| 138 | 136, 137 | breq12d 5137 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → (((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))) |
| 139 | 129, 138 | mtbird 325 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔)) |
| 140 | 139 | ralrimiva 3133 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔)) |
| 141 | | noresle 27666 |
. . . . 5
⊢ ((((𝑆 ↾ dom 𝑆) ∈ No
∧ (𝑍 ↾ dom 𝑆) ∈
No ) ∧ (dom (𝑆
↾ dom 𝑆) ⊆ dom
𝑆 ∧ dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆)) |
| 142 | 72, 75, 79, 83, 140, 141 | syl23anc 1379 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆)) |
| 143 | | nofun 27618 |
. . . . . 6
⊢ (𝑆 ∈
No → Fun 𝑆) |
| 144 | | funrel 6558 |
. . . . . 6
⊢ (Fun
𝑆 → Rel 𝑆) |
| 145 | | resdm 6018 |
. . . . . 6
⊢ (Rel
𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆) |
| 146 | 68, 143, 144, 145 | 4syl 19 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) = 𝑆) |
| 147 | 146 | breq2d 5136 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆) ↔ (𝑍 ↾ dom 𝑆) <s 𝑆)) |
| 148 | 142, 147 | mtbid 324 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 149 | 65, 148 | pm2.61ian 811 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 150 | | simpll1 1213 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ No
) |
| 151 | | simpll2 1214 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ V) |
| 152 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 153 | 3 | nosupbnd1 27683 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆) |
| 154 | 150, 151,
152, 153 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆) |
| 155 | | simplr 768 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) |
| 156 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → 𝐴 ⊆ No
) |
| 157 | 156 | sselda 3963 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ No
) |
| 158 | 150, 151,
66 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑆 ∈ No
) |
| 159 | 158, 69 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → dom 𝑆 ∈ On) |
| 160 | | noreson 27629 |
. . . . . . 7
⊢ ((𝑎 ∈
No ∧ dom 𝑆
∈ On) → (𝑎
↾ dom 𝑆) ∈ No ) |
| 161 | 157, 159,
160 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) ∈ No
) |
| 162 | | simpll3 1215 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑍 ∈ No
) |
| 163 | 162, 159,
74 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑍 ↾ dom 𝑆) ∈ No
) |
| 164 | | sotr3 5607 |
. . . . . . 7
⊢ (( <s
Or No ∧ ((𝑎 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No ))
→ (((𝑎 ↾ dom
𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
| 165 | 96, 164 | mpan 690 |
. . . . . 6
⊢ (((𝑎 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No )
→ (((𝑎 ↾ dom
𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
| 166 | 161, 158,
163, 165 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))) |
| 167 | 154, 155,
166 | mp2and 699 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)) |
| 168 | | sltres 27631 |
. . . . 5
⊢ ((𝑎 ∈
No ∧ 𝑍 ∈
No ∧ dom 𝑆 ∈ On) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍)) |
| 169 | 157, 162,
159, 168 | syl3anc 1373 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍)) |
| 170 | 167, 169 | mpd 15 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s 𝑍) |
| 171 | 170 | ralrimiva 3133 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
| 172 | 149, 171 | impbida 800 |
1
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑍 ∈ No ) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)) |