| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆)) |
| 2 | | simp3l 1202 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ≼ ω) |
| 3 | | measvunilem.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝐴 |
| 4 | 3 | abrexctf 32701 |
. . . . . 6
⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) |
| 5 | 2, 4 | syl 17 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) |
| 6 | | ctex 8983 |
. . . . 5
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 8 | | simp2 1137 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅})) |
| 9 | | eldifi 4111 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵 ∈ 𝑆) |
| 10 | 9 | ralimi 3074 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 11 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑥𝑆 |
| 12 | 11 | abrexss 32498 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑆 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝑆) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝑆) |
| 14 | 8, 13 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝑆) |
| 15 | | elpwg 4583 |
. . . . 5
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝑆)) |
| 16 | 15 | biimpar 477 |
. . . 4
⊢ (({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆) |
| 17 | 7, 14, 16 | syl2anc 584 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆) |
| 18 | | simp3r 1203 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Disj 𝑥 ∈ 𝐴 𝐵) |
| 19 | 3 | disjabrexf 32569 |
. . . 4
⊢
(Disj 𝑥
∈ 𝐴 𝐵 → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}𝑧) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}𝑧) |
| 21 | | measvun 34245 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}𝑧)) → (𝑀‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} (𝑀‘𝑧)) |
| 22 | 1, 17, 5, 20, 21 | syl112anc 1376 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} (𝑀‘𝑧)) |
| 23 | | dfiun2g 5011 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 24 | 23 | fveq2d 6885 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑀‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
| 25 | 8, 24 | syl 17 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = (𝑀‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
| 26 | | nfcv 2899 |
. . 3
⊢
Ⅎ𝑥(𝑀‘𝑧) |
| 27 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) |
| 28 | | nfra1 3270 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) |
| 29 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑥
≼ |
| 30 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑥ω |
| 31 | 3, 29, 30 | nfbr 5171 |
. . . . 5
⊢
Ⅎ𝑥 𝐴 ≼
ω |
| 32 | | nfdisj1 5105 |
. . . . 5
⊢
Ⅎ𝑥Disj
𝑥 ∈ 𝐴 𝐵 |
| 33 | 31, 32 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑥(𝐴 ≼ ω ∧
Disj 𝑥 ∈ 𝐴 𝐵) |
| 34 | 27, 28, 33 | nf3an 1901 |
. . 3
⊢
Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
| 35 | | fveq2 6881 |
. . 3
⊢ (𝑧 = 𝐵 → (𝑀‘𝑧) = (𝑀‘𝐵)) |
| 36 | | ctex 8983 |
. . . 4
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| 37 | 2, 36 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ∈ V) |
| 38 | 8 | r19.21bi 3238 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (𝑆 ∖ {∅})) |
| 39 | 34, 3, 38, 18 | disjdsct 32685 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 40 | | simpl1 1192 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ (measures‘𝑆)) |
| 41 | | measvxrge0 34241 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 42 | 9, 41 | sylan2 593 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 43 | 40, 38, 42 | syl2anc 584 |
. . 3
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 44 | 26, 34, 3, 35, 37, 39, 43, 38 | esumc 34087 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} (𝑀‘𝑧)) |
| 45 | 22, 25, 44 | 3eqtr4d 2781 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |