Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem Structured version   Visualization version   GIF version

Theorem measvunilem 34202
Description: Lemma for measvuni 34204. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.1 𝑥𝐴
Assertion
Ref Expression
measvunilem ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 simp3l 1202 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
3 measvunilem.1 . . . . . . 7 𝑥𝐴
43abrexctf 32642 . . . . . 6 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
52, 4syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
6 ctex 8935 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
75, 6syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
8 simp2 1137 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}))
9 eldifi 4094 . . . . . . 7 (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵𝑆)
109ralimi 3066 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥𝐴 𝐵𝑆)
11 nfcv 2891 . . . . . . 7 𝑥𝑆
1211abrexss 32441 . . . . . 6 (∀𝑥𝐴 𝐵𝑆 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
1310, 12syl 17 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
148, 13syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
15 elpwg 4566 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆))
1615biimpar 477 . . . 4 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
177, 14, 16syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
18 simp3r 1203 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
193disjabrexf 32512 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
2018, 19syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
21 measvun 34199 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
221, 17, 5, 20, 21syl112anc 1376 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
23 dfiun2g 4994 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2423fveq2d 6862 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
258, 24syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 nfcv 2891 . . 3 𝑥(𝑀𝑧)
27 nfv 1914 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
28 nfra1 3261 . . . 4 𝑥𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅})
29 nfcv 2891 . . . . . 6 𝑥
30 nfcv 2891 . . . . . 6 𝑥ω
313, 29, 30nfbr 5154 . . . . 5 𝑥 𝐴 ≼ ω
32 nfdisj1 5088 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
3331, 32nfan 1899 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
3427, 28, 33nf3an 1901 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
35 fveq2 6858 . . 3 (𝑧 = 𝐵 → (𝑀𝑧) = (𝑀𝐵))
36 ctex 8935 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
372, 36syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ∈ V)
388r19.21bi 3229 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ (𝑆 ∖ {∅}))
3934, 3, 38, 18disjdsct 32626 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Fun (𝑥𝐴𝐵))
40 simpl1 1192 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝑀 ∈ (measures‘𝑆))
41 measvxrge0 34195 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
429, 41sylan2 593 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀𝐵) ∈ (0[,]+∞))
4340, 38, 42syl2anc 584 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
4426, 34, 3, 35, 37, 39, 43, 38esumc 34041 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
4522, 25, 443eqtr4d 2774 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wnfc 2876  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cfv 6511  (class class class)co 7387  ωcom 7842  cdom 8916  0cc0 11068  +∞cpnf 11205  [,]cicc 13309  Σ*cesum 34017  measurescmeas 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-xadd 13073  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ds 17242  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-ordt 17464  df-xrs 17465  df-ps 18525  df-tsr 18526  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-cntz 19249  df-cmn 19712  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-nei 22985  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tsms 24014  df-esum 34018  df-meas 34186
This theorem is referenced by:  measvuni  34204
  Copyright terms: Public domain W3C validator