Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem Structured version   Visualization version   GIF version

Theorem measvunilem 31585
Description: Lemma for measvuni 31587. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.1 𝑥𝐴
Assertion
Ref Expression
measvunilem ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 simp3l 1198 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
3 measvunilem.1 . . . . . . 7 𝑥𝐴
43abrexctf 30484 . . . . . 6 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
52, 4syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
6 ctex 8511 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
75, 6syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
8 simp2 1134 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}))
9 eldifi 4057 . . . . . . 7 (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵𝑆)
109ralimi 3131 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥𝐴 𝐵𝑆)
11 nfcv 2958 . . . . . . 7 𝑥𝑆
1211abrexss 30284 . . . . . 6 (∀𝑥𝐴 𝐵𝑆 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
1310, 12syl 17 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
148, 13syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
15 elpwg 4503 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆))
1615biimpar 481 . . . 4 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
177, 14, 16syl2anc 587 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
18 simp3r 1199 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
193disjabrexf 30350 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
2018, 19syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
21 measvun 31582 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
221, 17, 5, 20, 21syl112anc 1371 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
23 dfiun2g 4920 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2423fveq2d 6653 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
258, 24syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 nfcv 2958 . . 3 𝑥(𝑀𝑧)
27 nfv 1915 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
28 nfra1 3186 . . . 4 𝑥𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅})
29 nfcv 2958 . . . . . 6 𝑥
30 nfcv 2958 . . . . . 6 𝑥ω
313, 29, 30nfbr 5080 . . . . 5 𝑥 𝐴 ≼ ω
32 nfdisj1 5012 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
3331, 32nfan 1900 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
3427, 28, 33nf3an 1902 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
35 fveq2 6649 . . 3 (𝑧 = 𝐵 → (𝑀𝑧) = (𝑀𝐵))
36 ctex 8511 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
372, 36syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ∈ V)
388r19.21bi 3176 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ (𝑆 ∖ {∅}))
3934, 3, 38, 18disjdsct 30466 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Fun (𝑥𝐴𝐵))
40 simpl1 1188 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝑀 ∈ (measures‘𝑆))
41 measvxrge0 31578 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
429, 41sylan2 595 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀𝐵) ∈ (0[,]+∞))
4340, 38, 42syl2anc 587 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
4426, 34, 3, 35, 37, 39, 43, 38esumc 31424 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
4522, 25, 443eqtr4d 2846 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  {cab 2779  wnfc 2939  wral 3109  wrex 3110  Vcvv 3444  cdif 3881  wss 3884  c0 4246  𝒫 cpw 4500  {csn 4528   cuni 4803   ciun 4884  Disj wdisj 4998   class class class wbr 5033  cfv 6328  (class class class)co 7139  ωcom 7564  cdom 8494  0cc0 10530  +∞cpnf 10665  [,]cicc 12733  Σ*cesum 31400  measurescmeas 31568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-xadd 12500  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-tset 16580  df-ple 16581  df-ds 16583  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-ordt 16770  df-xrs 16771  df-ps 17806  df-tsr 17807  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-cntz 18443  df-cmn 18904  df-fbas 20092  df-fg 20093  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-ntr 21629  df-nei 21707  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-tsms 22736  df-esum 31401  df-meas 31569
This theorem is referenced by:  measvuni  31587
  Copyright terms: Public domain W3C validator