Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem Structured version   Visualization version   GIF version

Theorem measvunilem 32811
Description: Lemma for measvuni 32813. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.1 𝑥𝐴
Assertion
Ref Expression
measvunilem ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 simp3l 1201 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
3 measvunilem.1 . . . . . . 7 𝑥𝐴
43abrexctf 31635 . . . . . 6 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
52, 4syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
6 ctex 8903 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
75, 6syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
8 simp2 1137 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}))
9 eldifi 4086 . . . . . . 7 (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵𝑆)
109ralimi 3086 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥𝐴 𝐵𝑆)
11 nfcv 2907 . . . . . . 7 𝑥𝑆
1211abrexss 31438 . . . . . 6 (∀𝑥𝐴 𝐵𝑆 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
1310, 12syl 17 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
148, 13syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
15 elpwg 4563 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆))
1615biimpar 478 . . . 4 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
177, 14, 16syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
18 simp3r 1202 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
193disjabrexf 31501 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
2018, 19syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
21 measvun 32808 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
221, 17, 5, 20, 21syl112anc 1374 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
23 dfiun2g 4990 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2423fveq2d 6846 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
258, 24syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 nfcv 2907 . . 3 𝑥(𝑀𝑧)
27 nfv 1917 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
28 nfra1 3267 . . . 4 𝑥𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅})
29 nfcv 2907 . . . . . 6 𝑥
30 nfcv 2907 . . . . . 6 𝑥ω
313, 29, 30nfbr 5152 . . . . 5 𝑥 𝐴 ≼ ω
32 nfdisj1 5084 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
3331, 32nfan 1902 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
3427, 28, 33nf3an 1904 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
35 fveq2 6842 . . 3 (𝑧 = 𝐵 → (𝑀𝑧) = (𝑀𝐵))
36 ctex 8903 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
372, 36syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ∈ V)
388r19.21bi 3234 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ (𝑆 ∖ {∅}))
3934, 3, 38, 18disjdsct 31616 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Fun (𝑥𝐴𝐵))
40 simpl1 1191 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝑀 ∈ (measures‘𝑆))
41 measvxrge0 32804 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
429, 41sylan2 593 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀𝐵) ∈ (0[,]+∞))
4340, 38, 42syl2anc 584 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
4426, 34, 3, 35, 37, 39, 43, 38esumc 32650 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
4522, 25, 443eqtr4d 2786 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wnfc 2887  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   ciun 4954  Disj wdisj 5070   class class class wbr 5105  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  0cc0 11051  +∞cpnf 11186  [,]cicc 13267  Σ*cesum 32626  measurescmeas 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-xadd 13034  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ds 17155  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-ordt 17383  df-xrs 17384  df-ps 18455  df-tsr 18456  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-cntz 19097  df-cmn 19564  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-nei 22449  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tsms 23478  df-esum 32627  df-meas 32795
This theorem is referenced by:  measvuni  32813
  Copyright terms: Public domain W3C validator