Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem Structured version   Visualization version   GIF version

Theorem measvunilem 32900
Description: Lemma for measvuni 32902. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.1 𝑥𝐴
Assertion
Ref Expression
measvunilem ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 simp3l 1201 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
3 measvunilem.1 . . . . . . 7 𝑥𝐴
43abrexctf 31703 . . . . . 6 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
52, 4syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
6 ctex 8910 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
75, 6syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
8 simp2 1137 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}))
9 eldifi 4091 . . . . . . 7 (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵𝑆)
109ralimi 3082 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥𝐴 𝐵𝑆)
11 nfcv 2902 . . . . . . 7 𝑥𝑆
1211abrexss 31502 . . . . . 6 (∀𝑥𝐴 𝐵𝑆 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
1310, 12syl 17 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
148, 13syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
15 elpwg 4568 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆))
1615biimpar 478 . . . 4 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
177, 14, 16syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
18 simp3r 1202 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
193disjabrexf 31568 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
2018, 19syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
21 measvun 32897 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
221, 17, 5, 20, 21syl112anc 1374 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
23 dfiun2g 4995 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2423fveq2d 6851 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
258, 24syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 nfcv 2902 . . 3 𝑥(𝑀𝑧)
27 nfv 1917 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
28 nfra1 3265 . . . 4 𝑥𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅})
29 nfcv 2902 . . . . . 6 𝑥
30 nfcv 2902 . . . . . 6 𝑥ω
313, 29, 30nfbr 5157 . . . . 5 𝑥 𝐴 ≼ ω
32 nfdisj1 5089 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
3331, 32nfan 1902 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
3427, 28, 33nf3an 1904 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
35 fveq2 6847 . . 3 (𝑧 = 𝐵 → (𝑀𝑧) = (𝑀𝐵))
36 ctex 8910 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
372, 36syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ∈ V)
388r19.21bi 3232 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ (𝑆 ∖ {∅}))
3934, 3, 38, 18disjdsct 31684 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Fun (𝑥𝐴𝐵))
40 simpl1 1191 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝑀 ∈ (measures‘𝑆))
41 measvxrge0 32893 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
429, 41sylan2 593 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀𝐵) ∈ (0[,]+∞))
4340, 38, 42syl2anc 584 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
4426, 34, 3, 35, 37, 39, 43, 38esumc 32739 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
4522, 25, 443eqtr4d 2781 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2708  wnfc 2882  wral 3060  wrex 3069  Vcvv 3446  cdif 3910  wss 3913  c0 4287  𝒫 cpw 4565  {csn 4591   cuni 4870   ciun 4959  Disj wdisj 5075   class class class wbr 5110  cfv 6501  (class class class)co 7362  ωcom 7807  cdom 8888  0cc0 11060  +∞cpnf 11195  [,]cicc 13277  Σ*cesum 32715  measurescmeas 32883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-ac2 10408  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-oi 9455  df-card 9884  df-acn 9887  df-ac 10061  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-xadd 13043  df-icc 13281  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-tset 17166  df-ple 17167  df-ds 17169  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-ordt 17397  df-xrs 17398  df-ps 18469  df-tsr 18470  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-cntz 19111  df-cmn 19578  df-fbas 20830  df-fg 20831  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-ntr 22408  df-nei 22486  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-tsms 23515  df-esum 32716  df-meas 32884
This theorem is referenced by:  measvuni  32902
  Copyright terms: Public domain W3C validator