Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem Structured version   Visualization version   GIF version

Theorem measvunilem 34217
Description: Lemma for measvuni 34219. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.1 𝑥𝐴
Assertion
Ref Expression
measvunilem ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 simp3l 1202 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
3 measvunilem.1 . . . . . . 7 𝑥𝐴
43abrexctf 32692 . . . . . 6 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
52, 4syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
6 ctex 8881 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
75, 6syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
8 simp2 1137 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}))
9 eldifi 4076 . . . . . . 7 (𝐵 ∈ (𝑆 ∖ {∅}) → 𝐵𝑆)
109ralimi 3069 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → ∀𝑥𝐴 𝐵𝑆)
11 nfcv 2894 . . . . . . 7 𝑥𝑆
1211abrexss 32484 . . . . . 6 (∀𝑥𝐴 𝐵𝑆 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
1310, 12syl 17 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
148, 13syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆)
15 elpwg 4548 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆))
1615biimpar 477 . . . 4 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝑆) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
177, 14, 16syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆)
18 simp3r 1203 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
193disjabrexf 32555 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
2018, 19syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)
21 measvun 34214 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝒫 𝑆 ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω ∧ Disj 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}𝑧)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
221, 17, 5, 20, 21syl112anc 1376 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
23 dfiun2g 4975 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2423fveq2d 6821 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
258, 24syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 nfcv 2894 . . 3 𝑥(𝑀𝑧)
27 nfv 1915 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
28 nfra1 3256 . . . 4 𝑥𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅})
29 nfcv 2894 . . . . . 6 𝑥
30 nfcv 2894 . . . . . 6 𝑥ω
313, 29, 30nfbr 5133 . . . . 5 𝑥 𝐴 ≼ ω
32 nfdisj1 5067 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
3331, 32nfan 1900 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
3427, 28, 33nf3an 1902 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
35 fveq2 6817 . . 3 (𝑧 = 𝐵 → (𝑀𝑧) = (𝑀𝐵))
36 ctex 8881 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
372, 36syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ∈ V)
388r19.21bi 3224 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ (𝑆 ∖ {∅}))
3934, 3, 38, 18disjdsct 32676 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Fun (𝑥𝐴𝐵))
40 simpl1 1192 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝑀 ∈ (measures‘𝑆))
41 measvxrge0 34210 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
429, 41sylan2 593 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ (𝑆 ∖ {∅})) → (𝑀𝐵) ∈ (0[,]+∞))
4340, 38, 42syl2anc 584 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
4426, 34, 3, 35, 37, 39, 43, 38esumc 34056 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} (𝑀𝑧))
4522, 25, 443eqtr4d 2776 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wnfc 2879  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cuni 4854   ciun 4936  Disj wdisj 5053   class class class wbr 5086  cfv 6476  (class class class)co 7341  ωcom 7791  cdom 8862  0cc0 11001  +∞cpnf 11138  [,]cicc 13243  Σ*cesum 34032  measurescmeas 34200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-oi 9391  df-card 9827  df-acn 9830  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-xadd 13007  df-icc 13247  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-tset 17175  df-ple 17176  df-ds 17178  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-ordt 17400  df-xrs 17401  df-ps 18467  df-tsr 18468  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-cntz 19224  df-cmn 19689  df-fbas 21283  df-fg 21284  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-ntr 22930  df-nei 23008  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-tsms 24037  df-esum 34033  df-meas 34201
This theorem is referenced by:  measvuni  34219
  Copyright terms: Public domain W3C validator