Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimass4f | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.) |
Ref | Expression |
---|---|
funimass4f.1 | ⊢ Ⅎ𝑥𝐴 |
funimass4f.2 | ⊢ Ⅎ𝑥𝐵 |
funimass4f.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funimass4f | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nffun 6441 | . . . . 5 ⊢ Ⅎ𝑥Fun 𝐹 |
3 | funimass4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | 1 | nfdm 5849 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 3, 4 | nfss 3909 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ⊆ dom 𝐹 |
6 | 2, 5 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) |
7 | 1, 3 | nfima 5966 | . . . . 5 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) |
8 | funimass4f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
9 | 7, 8 | nfss 3909 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) ⊆ 𝐵 |
10 | 6, 9 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) |
11 | funfvima2 7089 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) | |
12 | ssel 3910 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ 𝐵)) | |
13 | 11, 12 | sylan9 507 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) |
14 | 10, 13 | ralrimi 3139 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
15 | 3, 1 | dfimafnf 30872 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
16 | 15 | adantr 480 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
17 | 8 | abrexss 30758 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
18 | 17 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
19 | 16, 18 | eqsstrd 3955 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) ⊆ 𝐵) |
20 | 14, 19 | impbida 797 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 dom cdm 5580 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: ballotlem7 32402 |
Copyright terms: Public domain | W3C validator |