Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimass4f | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.) |
Ref | Expression |
---|---|
funimass4f.1 | ⊢ Ⅎ𝑥𝐴 |
funimass4f.2 | ⊢ Ⅎ𝑥𝐵 |
funimass4f.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funimass4f | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nffun 6358 | . . . . 5 ⊢ Ⅎ𝑥Fun 𝐹 |
3 | funimass4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | 1 | nfdm 5792 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 3, 4 | nfss 3884 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ⊆ dom 𝐹 |
6 | 2, 5 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) |
7 | 1, 3 | nfima 5909 | . . . . 5 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) |
8 | funimass4f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
9 | 7, 8 | nfss 3884 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) ⊆ 𝐵 |
10 | 6, 9 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) |
11 | funfvima2 6985 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) | |
12 | ssel 3885 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ 𝐵)) | |
13 | 11, 12 | sylan9 511 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) |
14 | 10, 13 | ralrimi 3144 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
15 | 3, 1 | dfimafnf 30493 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
16 | 15 | adantr 484 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
17 | 8 | abrexss 30379 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
18 | 17 | adantl 485 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
19 | 16, 18 | eqsstrd 3930 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) ⊆ 𝐵) |
20 | 14, 19 | impbida 800 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 dom cdm 5524 “ cima 5527 Fun wfun 6329 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-fv 6343 |
This theorem is referenced by: ballotlem7 32021 |
Copyright terms: Public domain | W3C validator |