![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimass4f | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.) |
Ref | Expression |
---|---|
funimass4f.1 | ⊢ Ⅎ𝑥𝐴 |
funimass4f.2 | ⊢ Ⅎ𝑥𝐵 |
funimass4f.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funimass4f | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nffun 6562 | . . . . 5 ⊢ Ⅎ𝑥Fun 𝐹 |
3 | funimass4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | 1 | nfdm 5941 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
5 | 3, 4 | nfss 3967 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ⊆ dom 𝐹 |
6 | 2, 5 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) |
7 | 1, 3 | nfima 6058 | . . . . 5 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) |
8 | funimass4f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
9 | 7, 8 | nfss 3967 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) ⊆ 𝐵 |
10 | 6, 9 | nfan 1894 | . . 3 ⊢ Ⅎ𝑥((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) |
11 | funfvima2 7225 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) | |
12 | ssel 3968 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ 𝐵)) | |
13 | 11, 12 | sylan9 507 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) |
14 | 10, 13 | ralrimi 3246 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
15 | 3, 1 | dfimafnf 32332 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
16 | 15 | adantr 480 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
17 | 8 | abrexss 32221 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
18 | 17 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
19 | 16, 18 | eqsstrd 4013 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) ⊆ 𝐵) |
20 | 14, 19 | impbida 798 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 Ⅎwnfc 2875 ∀wral 3053 ∃wrex 3062 ⊆ wss 3941 dom cdm 5667 “ cima 5670 Fun wfun 6528 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 |
This theorem is referenced by: ballotlem7 34026 |
Copyright terms: Public domain | W3C validator |