Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimass4f Structured version   Visualization version   GIF version

Theorem funimass4f 32621
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
funimass4f.1 𝑥𝐴
funimass4f.2 𝑥𝐵
funimass4f.3 𝑥𝐹
Assertion
Ref Expression
funimass4f ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem funimass4f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimass4f.3 . . . . . 6 𝑥𝐹
21nffun 6509 . . . . 5 𝑥Fun 𝐹
3 funimass4f.1 . . . . . 6 𝑥𝐴
41nfdm 5895 . . . . . 6 𝑥dom 𝐹
53, 4nfss 3923 . . . . 5 𝑥 𝐴 ⊆ dom 𝐹
62, 5nfan 1900 . . . 4 𝑥(Fun 𝐹𝐴 ⊆ dom 𝐹)
71, 3nfima 6021 . . . . 5 𝑥(𝐹𝐴)
8 funimass4f.2 . . . . 5 𝑥𝐵
97, 8nfss 3923 . . . 4 𝑥(𝐹𝐴) ⊆ 𝐵
106, 9nfan 1900 . . 3 𝑥((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵)
11 funfvima2 7171 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
12 ssel 3924 . . . 4 ((𝐹𝐴) ⊆ 𝐵 → ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ 𝐵))
1311, 12sylan9 507 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵))
1410, 13ralrimi 3231 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
153, 1dfimafnf 32620 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1615adantr 480 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
178abrexss 32494 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1817adantl 481 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1916, 18eqsstrd 3965 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) ⊆ 𝐵)
2014, 19impbida 800 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wnfc 2880  wral 3048  wrex 3057  wss 3898  dom cdm 5619  cima 5622  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  ballotlem7  34570
  Copyright terms: Public domain W3C validator