| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funimass4f | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.) |
| Ref | Expression |
|---|---|
| funimass4f.1 | ⊢ Ⅎ𝑥𝐴 |
| funimass4f.2 | ⊢ Ⅎ𝑥𝐵 |
| funimass4f.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funimass4f | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nffun 6509 | . . . . 5 ⊢ Ⅎ𝑥Fun 𝐹 |
| 3 | funimass4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 1 | nfdm 5895 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 3, 4 | nfss 3923 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ⊆ dom 𝐹 |
| 6 | 2, 5 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) |
| 7 | 1, 3 | nfima 6021 | . . . . 5 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) |
| 8 | funimass4f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 9 | 7, 8 | nfss 3923 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) ⊆ 𝐵 |
| 10 | 6, 9 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) |
| 11 | funfvima2 7171 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) | |
| 12 | ssel 3924 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ 𝐵)) | |
| 13 | 11, 12 | sylan9 507 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 10, 13 | ralrimi 3231 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 15 | 3, 1 | dfimafnf 32620 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 16 | 15 | adantr 480 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 17 | 8 | abrexss 32494 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
| 19 | 16, 18 | eqsstrd 3965 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 20 | 14, 19 | impbida 800 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 Ⅎwnfc 2880 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: ballotlem7 34570 |
| Copyright terms: Public domain | W3C validator |