Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimass4f Structured version   Visualization version   GIF version

Theorem funimass4f 32568
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
funimass4f.1 𝑥𝐴
funimass4f.2 𝑥𝐵
funimass4f.3 𝑥𝐹
Assertion
Ref Expression
funimass4f ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem funimass4f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimass4f.3 . . . . . 6 𝑥𝐹
21nffun 6542 . . . . 5 𝑥Fun 𝐹
3 funimass4f.1 . . . . . 6 𝑥𝐴
41nfdm 5918 . . . . . 6 𝑥dom 𝐹
53, 4nfss 3942 . . . . 5 𝑥 𝐴 ⊆ dom 𝐹
62, 5nfan 1899 . . . 4 𝑥(Fun 𝐹𝐴 ⊆ dom 𝐹)
71, 3nfima 6042 . . . . 5 𝑥(𝐹𝐴)
8 funimass4f.2 . . . . 5 𝑥𝐵
97, 8nfss 3942 . . . 4 𝑥(𝐹𝐴) ⊆ 𝐵
106, 9nfan 1899 . . 3 𝑥((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵)
11 funfvima2 7208 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
12 ssel 3943 . . . 4 ((𝐹𝐴) ⊆ 𝐵 → ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ 𝐵))
1311, 12sylan9 507 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵))
1410, 13ralrimi 3236 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
153, 1dfimafnf 32567 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1615adantr 480 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
178abrexss 32448 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1817adantl 481 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1916, 18eqsstrd 3984 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) ⊆ 𝐵)
2014, 19impbida 800 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wnfc 2877  wral 3045  wrex 3054  wss 3917  dom cdm 5641  cima 5644  Fun wfun 6508  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  ballotlem7  34534
  Copyright terms: Public domain W3C validator