Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimass4f Structured version   Visualization version   GIF version

Theorem funimass4f 32656
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
funimass4f.1 𝑥𝐴
funimass4f.2 𝑥𝐵
funimass4f.3 𝑥𝐹
Assertion
Ref Expression
funimass4f ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem funimass4f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimass4f.3 . . . . . 6 𝑥𝐹
21nffun 6601 . . . . 5 𝑥Fun 𝐹
3 funimass4f.1 . . . . . 6 𝑥𝐴
41nfdm 5976 . . . . . 6 𝑥dom 𝐹
53, 4nfss 4001 . . . . 5 𝑥 𝐴 ⊆ dom 𝐹
62, 5nfan 1898 . . . 4 𝑥(Fun 𝐹𝐴 ⊆ dom 𝐹)
71, 3nfima 6097 . . . . 5 𝑥(𝐹𝐴)
8 funimass4f.2 . . . . 5 𝑥𝐵
97, 8nfss 4001 . . . 4 𝑥(𝐹𝐴) ⊆ 𝐵
106, 9nfan 1898 . . 3 𝑥((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵)
11 funfvima2 7268 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
12 ssel 4002 . . . 4 ((𝐹𝐴) ⊆ 𝐵 → ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ 𝐵))
1311, 12sylan9 507 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵))
1410, 13ralrimi 3263 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ (𝐹𝐴) ⊆ 𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
153, 1dfimafnf 32655 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1615adantr 480 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
178abrexss 32540 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1817adantl 481 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ⊆ 𝐵)
1916, 18eqsstrd 4047 . 2 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴) ⊆ 𝐵)
2014, 19impbida 800 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wnfc 2893  wral 3067  wrex 3076  wss 3976  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  ballotlem7  34500
  Copyright terms: Public domain W3C validator