| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funimass4f | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017.) |
| Ref | Expression |
|---|---|
| funimass4f.1 | ⊢ Ⅎ𝑥𝐴 |
| funimass4f.2 | ⊢ Ⅎ𝑥𝐵 |
| funimass4f.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funimass4f | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nffun 6539 | . . . . 5 ⊢ Ⅎ𝑥Fun 𝐹 |
| 3 | funimass4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 1 | nfdm 5915 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | 3, 4 | nfss 3939 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ⊆ dom 𝐹 |
| 6 | 2, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) |
| 7 | 1, 3 | nfima 6039 | . . . . 5 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) |
| 8 | funimass4f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 9 | 7, 8 | nfss 3939 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ 𝐴) ⊆ 𝐵 |
| 10 | 6, 9 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) |
| 11 | funfvima2 7205 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) | |
| 12 | ssel 3940 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ 𝐵)) | |
| 13 | 11, 12 | sylan9 507 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 10, 13 | ralrimi 3235 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝐹 “ 𝐴) ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 15 | 3, 1 | dfimafnf 32560 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 16 | 15 | adantr 480 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 17 | 8 | abrexss 32441 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ⊆ 𝐵) |
| 19 | 16, 18 | eqsstrd 3981 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 20 | 14, 19 | impbida 800 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: ballotlem7 34527 |
| Copyright terms: Public domain | W3C validator |