Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls1 Structured version   Visualization version   GIF version

Theorem zarcls1 33859
Description: The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls1.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zarcls1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarcls1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) = ∅)
2 sseq2 3973 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝐼𝑗𝐼𝑚))
3 eqid 2729 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
43mxidlprm 33441 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
54ad5ant14 757 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
6 simpr 484 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼𝑚)
72, 5, 6elrabd 3661 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
8 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
98a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
10 sseq1 3972 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
1110rabbidv 3413 . . . . . . . . . . 11 (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
1211adantl 481 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
13 simp-4r 783 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼 ∈ (LIdeal‘𝑅))
14 fvex 6871 . . . . . . . . . . . 12 (PrmIdeal‘𝑅) ∈ V
1514rabex 5294 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V
1615a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V)
179, 12, 13, 16fvmptd 6975 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
187, 17eleqtrrd 2831 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (𝑉𝐼))
19 ne0i 4304 . . . . . . . 8 (𝑚 ∈ (𝑉𝐼) → (𝑉𝐼) ≠ ∅)
2018, 19syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) ≠ ∅)
21 crngring 20154 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
22 zarcls1.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2322ssmxidl 33445 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
24233expa 1118 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2521, 24sylanl1 680 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2620, 25r19.29a 3141 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2726adantlr 715 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2827neneqd 2930 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → ¬ (𝑉𝐼) = ∅)
291, 28pm2.65da 816 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → ¬ 𝐼𝐵)
30 nne 2929 . . 3 𝐼𝐵𝐼 = 𝐵)
3129, 30sylib 218 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → 𝐼 = 𝐵)
32 fveq2 6858 . . . 4 (𝐼 = 𝐵 → (𝑉𝐼) = (𝑉𝐵))
3332adantl 481 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = (𝑉𝐵))
348a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
35 sseq1 3972 . . . . . . . . 9 (𝑖 = 𝐵 → (𝑖𝑗𝐵𝑗))
3635adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖𝑗𝐵𝑗))
3736rabbidv 3413 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
38 eqid 2729 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3938, 22lidl1 21143 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4014rabex 5294 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V
4140a1i 11 . . . . . . 7 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V)
4234, 37, 39, 41fvmptd 6975 . . . . . 6 (𝑅 ∈ Ring → (𝑉𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
43 prmidlidl 33415 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
4422, 38lidlss 21122 . . . . . . . . . . . 12 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
4543, 44syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
4645adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
47 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝐵𝑗)
4846, 47eqssd 3964 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗 = 𝐵)
49 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
5022, 49prmidlnr 33410 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
5150adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
5251neneqd 2930 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → ¬ 𝑗 = 𝐵)
5348, 52pm2.65da 816 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵𝑗)
5453ralrimiva 3125 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
55 rabeq0 4351 . . . . . . 7 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
5654, 55sylibr 234 . . . . . 6 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅)
5742, 56eqtrd 2764 . . . . 5 (𝑅 ∈ Ring → (𝑉𝐵) = ∅)
5821, 57syl 17 . . . 4 (𝑅 ∈ CRing → (𝑉𝐵) = ∅)
5958ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐵) = ∅)
6033, 59eqtrd 2764 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = ∅)
6131, 60impbida 800 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  cmpt 5188  cfv 6511  Basecbs 17179  .rcmulr 17221  LSSumclsm 19564  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143  LIdealclidl 21116  PrmIdealcprmidl 33406  MaxIdealcmxidl 33430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-lpidl 21232  df-prmidl 33407  df-mxidl 33431
This theorem is referenced by:  zarclssn  33863  zartopn  33865  zarcmplem  33871
  Copyright terms: Public domain W3C validator