Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls1 Structured version   Visualization version   GIF version

Theorem zarcls1 33815
Description: The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls1.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zarcls1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarcls1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) = ∅)
2 sseq2 4035 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝐼𝑗𝐼𝑚))
3 eqid 2740 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
43mxidlprm 33463 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
54ad5ant14 757 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
6 simpr 484 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼𝑚)
72, 5, 6elrabd 3710 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
8 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
98a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
10 sseq1 4034 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
1110rabbidv 3451 . . . . . . . . . . 11 (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
1211adantl 481 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
13 simp-4r 783 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼 ∈ (LIdeal‘𝑅))
14 fvex 6933 . . . . . . . . . . . 12 (PrmIdeal‘𝑅) ∈ V
1514rabex 5357 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V
1615a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V)
179, 12, 13, 16fvmptd 7036 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
187, 17eleqtrrd 2847 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (𝑉𝐼))
19 ne0i 4364 . . . . . . . 8 (𝑚 ∈ (𝑉𝐼) → (𝑉𝐼) ≠ ∅)
2018, 19syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) ≠ ∅)
21 crngring 20272 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
22 zarcls1.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2322ssmxidl 33467 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
24233expa 1118 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2521, 24sylanl1 679 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2620, 25r19.29a 3168 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2726adantlr 714 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2827neneqd 2951 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → ¬ (𝑉𝐼) = ∅)
291, 28pm2.65da 816 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → ¬ 𝐼𝐵)
30 nne 2950 . . 3 𝐼𝐵𝐼 = 𝐵)
3129, 30sylib 218 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → 𝐼 = 𝐵)
32 fveq2 6920 . . . 4 (𝐼 = 𝐵 → (𝑉𝐼) = (𝑉𝐵))
3332adantl 481 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = (𝑉𝐵))
348a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
35 sseq1 4034 . . . . . . . . 9 (𝑖 = 𝐵 → (𝑖𝑗𝐵𝑗))
3635adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖𝑗𝐵𝑗))
3736rabbidv 3451 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
38 eqid 2740 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3938, 22lidl1 21266 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4014rabex 5357 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V
4140a1i 11 . . . . . . 7 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V)
4234, 37, 39, 41fvmptd 7036 . . . . . 6 (𝑅 ∈ Ring → (𝑉𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
43 prmidlidl 33437 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
4422, 38lidlss 21245 . . . . . . . . . . . 12 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
4543, 44syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
4645adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
47 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝐵𝑗)
4846, 47eqssd 4026 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗 = 𝐵)
49 eqid 2740 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
5022, 49prmidlnr 33432 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
5150adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
5251neneqd 2951 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → ¬ 𝑗 = 𝐵)
5348, 52pm2.65da 816 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵𝑗)
5453ralrimiva 3152 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
55 rabeq0 4411 . . . . . . 7 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
5654, 55sylibr 234 . . . . . 6 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅)
5742, 56eqtrd 2780 . . . . 5 (𝑅 ∈ Ring → (𝑉𝐵) = ∅)
5821, 57syl 17 . . . 4 (𝑅 ∈ CRing → (𝑉𝐵) = ∅)
5958ad2antrr 725 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐵) = ∅)
6033, 59eqtrd 2780 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = ∅)
6131, 60impbida 800 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  cmpt 5249  cfv 6573  Basecbs 17258  .rcmulr 17312  LSSumclsm 19676  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  PrmIdealcprmidl 33428  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-lpidl 21355  df-prmidl 33429  df-mxidl 33453
This theorem is referenced by:  zarclssn  33819  zartopn  33821  zarcmplem  33827
  Copyright terms: Public domain W3C validator