Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls1 Structured version   Visualization version   GIF version

Theorem zarcls1 33686
Description: The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls1.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zarcls1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarcls1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) = ∅)
2 sseq2 4006 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝐼𝑗𝐼𝑚))
3 eqid 2726 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
43mxidlprm 33347 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
54ad5ant14 756 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
6 simpr 483 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼𝑚)
72, 5, 6elrabd 3683 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
8 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
98a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
10 sseq1 4005 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
1110rabbidv 3427 . . . . . . . . . . 11 (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
1211adantl 480 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
13 simp-4r 782 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼 ∈ (LIdeal‘𝑅))
14 fvex 6916 . . . . . . . . . . . 12 (PrmIdeal‘𝑅) ∈ V
1514rabex 5341 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V
1615a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V)
179, 12, 13, 16fvmptd 7018 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
187, 17eleqtrrd 2829 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (𝑉𝐼))
19 ne0i 4337 . . . . . . . 8 (𝑚 ∈ (𝑉𝐼) → (𝑉𝐼) ≠ ∅)
2018, 19syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) ≠ ∅)
21 crngring 20230 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
22 zarcls1.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2322ssmxidl 33351 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
24233expa 1115 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2521, 24sylanl1 678 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2620, 25r19.29a 3152 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2726adantlr 713 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2827neneqd 2935 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → ¬ (𝑉𝐼) = ∅)
291, 28pm2.65da 815 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → ¬ 𝐼𝐵)
30 nne 2934 . . 3 𝐼𝐵𝐼 = 𝐵)
3129, 30sylib 217 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → 𝐼 = 𝐵)
32 fveq2 6903 . . . 4 (𝐼 = 𝐵 → (𝑉𝐼) = (𝑉𝐵))
3332adantl 480 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = (𝑉𝐵))
348a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
35 sseq1 4005 . . . . . . . . 9 (𝑖 = 𝐵 → (𝑖𝑗𝐵𝑗))
3635adantl 480 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖𝑗𝐵𝑗))
3736rabbidv 3427 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
38 eqid 2726 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3938, 22lidl1 21224 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4014rabex 5341 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V
4140a1i 11 . . . . . . 7 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V)
4234, 37, 39, 41fvmptd 7018 . . . . . 6 (𝑅 ∈ Ring → (𝑉𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
43 prmidlidl 33321 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
4422, 38lidlss 21203 . . . . . . . . . . . 12 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
4543, 44syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
4645adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
47 simpr 483 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝐵𝑗)
4846, 47eqssd 3997 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗 = 𝐵)
49 eqid 2726 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
5022, 49prmidlnr 33316 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
5150adantr 479 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
5251neneqd 2935 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → ¬ 𝑗 = 𝐵)
5348, 52pm2.65da 815 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵𝑗)
5453ralrimiva 3136 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
55 rabeq0 4389 . . . . . . 7 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
5654, 55sylibr 233 . . . . . 6 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅)
5742, 56eqtrd 2766 . . . . 5 (𝑅 ∈ Ring → (𝑉𝐵) = ∅)
5821, 57syl 17 . . . 4 (𝑅 ∈ CRing → (𝑉𝐵) = ∅)
5958ad2antrr 724 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐵) = ∅)
6033, 59eqtrd 2766 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = ∅)
6131, 60impbida 799 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3947  c0 4325  cmpt 5238  cfv 6556  Basecbs 17215  .rcmulr 17269  LSSumclsm 19634  mulGrpcmgp 20119  Ringcrg 20218  CRingccrg 20219  LIdealclidl 21197  PrmIdealcprmidl 33312  MaxIdealcmxidl 33336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-ac2 10508  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-rpss 7736  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-oadd 8502  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-dju 9946  df-card 9984  df-ac 10161  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-sca 17284  df-vsca 17285  df-ip 17286  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-grp 18933  df-minusg 18934  df-sbg 18935  df-subg 19119  df-cntz 19313  df-lsm 19636  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-cring 20221  df-subrg 20555  df-lmod 20840  df-lss 20911  df-lsp 20951  df-sra 21153  df-rgmod 21154  df-lidl 21199  df-rsp 21200  df-lpidl 21313  df-prmidl 33313  df-mxidl 33337
This theorem is referenced by:  zarclssn  33690  zartopn  33692  zarcmplem  33698
  Copyright terms: Public domain W3C validator