Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls1 Structured version   Visualization version   GIF version

Theorem zarcls1 33872
Description: The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls1.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zarcls1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarcls1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) = ∅)
2 sseq2 3959 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝐼𝑗𝐼𝑚))
3 eqid 2730 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
43mxidlprm 33425 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
54ad5ant14 757 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
6 simpr 484 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼𝑚)
72, 5, 6elrabd 3647 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
8 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
98a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
10 sseq1 3958 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
1110rabbidv 3400 . . . . . . . . . . 11 (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
1211adantl 481 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
13 simp-4r 783 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼 ∈ (LIdeal‘𝑅))
14 fvex 6830 . . . . . . . . . . . 12 (PrmIdeal‘𝑅) ∈ V
1514rabex 5275 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V
1615a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V)
179, 12, 13, 16fvmptd 6931 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
187, 17eleqtrrd 2832 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (𝑉𝐼))
19 ne0i 4289 . . . . . . . 8 (𝑚 ∈ (𝑉𝐼) → (𝑉𝐼) ≠ ∅)
2018, 19syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) ≠ ∅)
21 crngring 20156 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
22 zarcls1.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2322ssmxidl 33429 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
24233expa 1118 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2521, 24sylanl1 680 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2620, 25r19.29a 3138 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2726adantlr 715 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2827neneqd 2931 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → ¬ (𝑉𝐼) = ∅)
291, 28pm2.65da 816 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → ¬ 𝐼𝐵)
30 nne 2930 . . 3 𝐼𝐵𝐼 = 𝐵)
3129, 30sylib 218 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → 𝐼 = 𝐵)
32 fveq2 6817 . . . 4 (𝐼 = 𝐵 → (𝑉𝐼) = (𝑉𝐵))
3332adantl 481 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = (𝑉𝐵))
348a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
35 sseq1 3958 . . . . . . . . 9 (𝑖 = 𝐵 → (𝑖𝑗𝐵𝑗))
3635adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖𝑗𝐵𝑗))
3736rabbidv 3400 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
38 eqid 2730 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3938, 22lidl1 21163 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4014rabex 5275 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V
4140a1i 11 . . . . . . 7 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V)
4234, 37, 39, 41fvmptd 6931 . . . . . 6 (𝑅 ∈ Ring → (𝑉𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
43 prmidlidl 33399 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
4422, 38lidlss 21142 . . . . . . . . . . . 12 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
4543, 44syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
4645adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
47 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝐵𝑗)
4846, 47eqssd 3950 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗 = 𝐵)
49 eqid 2730 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
5022, 49prmidlnr 33394 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
5150adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
5251neneqd 2931 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → ¬ 𝑗 = 𝐵)
5348, 52pm2.65da 816 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵𝑗)
5453ralrimiva 3122 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
55 rabeq0 4336 . . . . . . 7 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
5654, 55sylibr 234 . . . . . 6 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅)
5742, 56eqtrd 2765 . . . . 5 (𝑅 ∈ Ring → (𝑉𝐵) = ∅)
5821, 57syl 17 . . . 4 (𝑅 ∈ CRing → (𝑉𝐵) = ∅)
5958ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐵) = ∅)
6033, 59eqtrd 2765 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = ∅)
6131, 60impbida 800 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  c0 4281  cmpt 5170  cfv 6477  Basecbs 17112  .rcmulr 17154  LSSumclsm 19539  mulGrpcmgp 20051  Ringcrg 20144  CRingccrg 20145  LIdealclidl 21136  PrmIdealcprmidl 33390  MaxIdealcmxidl 33414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-lpidl 21252  df-prmidl 33391  df-mxidl 33415
This theorem is referenced by:  zarclssn  33876  zartopn  33878  zarcmplem  33884
  Copyright terms: Public domain W3C validator