Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls1 Structured version   Visualization version   GIF version

Theorem zarcls1 31721
Description: The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls1.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zarcls1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem zarcls1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) = ∅)
2 sseq2 3943 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝐼𝑗𝐼𝑚))
3 eqid 2738 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
43mxidlprm 31542 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
54ad5ant14 754 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅))
6 simpr 484 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼𝑚)
72, 5, 6elrabd 3619 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
8 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
98a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
10 sseq1 3942 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
1110rabbidv 3404 . . . . . . . . . . 11 (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
1211adantl 481 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
13 simp-4r 780 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝐼 ∈ (LIdeal‘𝑅))
14 fvex 6769 . . . . . . . . . . . 12 (PrmIdeal‘𝑅) ∈ V
1514rabex 5251 . . . . . . . . . . 11 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V
1615a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗} ∈ V)
179, 12, 13, 16fvmptd 6864 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼𝑗})
187, 17eleqtrrd 2842 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → 𝑚 ∈ (𝑉𝐼))
19 ne0i 4265 . . . . . . . 8 (𝑚 ∈ (𝑉𝐼) → (𝑉𝐼) ≠ ∅)
2018, 19syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼𝑚) → (𝑉𝐼) ≠ ∅)
21 crngring 19710 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
22 zarcls1.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2322ssmxidl 31544 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
24233expa 1116 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2521, 24sylanl1 676 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼𝑚)
2620, 25r19.29a 3217 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2726adantlr 711 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → (𝑉𝐼) ≠ ∅)
2827neneqd 2947 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) ∧ 𝐼𝐵) → ¬ (𝑉𝐼) = ∅)
291, 28pm2.65da 813 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → ¬ 𝐼𝐵)
30 nne 2946 . . 3 𝐼𝐵𝐼 = 𝐵)
3129, 30sylib 217 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉𝐼) = ∅) → 𝐼 = 𝐵)
32 fveq2 6756 . . . 4 (𝐼 = 𝐵 → (𝑉𝐼) = (𝑉𝐵))
3332adantl 481 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = (𝑉𝐵))
348a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
35 sseq1 3942 . . . . . . . . 9 (𝑖 = 𝐵 → (𝑖𝑗𝐵𝑗))
3635adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖𝑗𝐵𝑗))
3736rabbidv 3404 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
38 eqid 2738 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3938, 22lidl1 20404 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4014rabex 5251 . . . . . . . 8 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V
4140a1i 11 . . . . . . 7 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} ∈ V)
4234, 37, 39, 41fvmptd 6864 . . . . . 6 (𝑅 ∈ Ring → (𝑉𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗})
43 prmidlidl 31521 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
4422, 38lidlss 20394 . . . . . . . . . . . 12 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
4543, 44syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
4645adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
47 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝐵𝑗)
4846, 47eqssd 3934 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗 = 𝐵)
49 eqid 2738 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
5022, 49prmidlnr 31516 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗𝐵)
5150adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → 𝑗𝐵)
5251neneqd 2947 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵𝑗) → ¬ 𝑗 = 𝐵)
5348, 52pm2.65da 813 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵𝑗)
5453ralrimiva 3107 . . . . . . 7 (𝑅 ∈ Ring → ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
55 rabeq0 4315 . . . . . . 7 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵𝑗)
5654, 55sylibr 233 . . . . . 6 (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵𝑗} = ∅)
5742, 56eqtrd 2778 . . . . 5 (𝑅 ∈ Ring → (𝑉𝐵) = ∅)
5821, 57syl 17 . . . 4 (𝑅 ∈ CRing → (𝑉𝐵) = ∅)
5958ad2antrr 722 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐵) = ∅)
6033, 59eqtrd 2778 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉𝐼) = ∅)
6131, 60impbida 797 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉𝐼) = ∅ ↔ 𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  cmpt 5153  cfv 6418  Basecbs 16840  .rcmulr 16889  LSSumclsm 19154  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  PrmIdealcprmidl 31512  MaxIdealcmxidl 31533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-lpidl 20427  df-prmidl 31513  df-mxidl 31534
This theorem is referenced by:  zarclssn  31725  zartopn  31727  zarcmplem  31733
  Copyright terms: Public domain W3C validator