| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉‘𝐼) = ∅) ∧ 𝐼 ≠ 𝐵) → (𝑉‘𝐼) = ∅) |
| 2 | | sseq2 3990 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (𝐼 ⊆ 𝑗 ↔ 𝐼 ⊆ 𝑚)) |
| 3 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) |
| 4 | 3 | mxidlprm 33490 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 5 | 4 | ad5ant14 757 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 6 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝐼 ⊆ 𝑚) |
| 7 | 2, 5, 6 | elrabd 3678 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝑚 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 8 | | zarclsx.1 |
. . . . . . . . . . 11
⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 9 | 8 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 10 | | sseq1 3989 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑖 ⊆ 𝑗 ↔ 𝐼 ⊆ 𝑗)) |
| 11 | 10 | rabbidv 3428 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 12 | 11 | adantl 481 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) ∧ 𝑖 = 𝐼) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 13 | | simp-4r 783 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 14 | | fvex 6894 |
. . . . . . . . . . . 12
⊢
(PrmIdeal‘𝑅)
∈ V |
| 15 | 14 | rabex 5314 |
. . . . . . . . . . 11
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗} ∈ V |
| 16 | 15 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗} ∈ V) |
| 17 | 9, 12, 13, 16 | fvmptd 6998 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → (𝑉‘𝐼) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 18 | 7, 17 | eleqtrrd 2838 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → 𝑚 ∈ (𝑉‘𝐼)) |
| 19 | | ne0i 4321 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝑉‘𝐼) → (𝑉‘𝐼) ≠ ∅) |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝐼 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ⊆ 𝑚) → (𝑉‘𝐼) ≠ ∅) |
| 21 | | crngring 20210 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 22 | | zarcls1.1 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
| 23 | 22 | ssmxidl 33494 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) |
| 24 | 23 | 3expa 1118 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) |
| 25 | 21, 24 | sylanl1 680 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) |
| 26 | 20, 25 | r19.29a 3149 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 ≠ 𝐵) → (𝑉‘𝐼) ≠ ∅) |
| 27 | 26 | adantlr 715 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉‘𝐼) = ∅) ∧ 𝐼 ≠ 𝐵) → (𝑉‘𝐼) ≠ ∅) |
| 28 | 27 | neneqd 2938 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉‘𝐼) = ∅) ∧ 𝐼 ≠ 𝐵) → ¬ (𝑉‘𝐼) = ∅) |
| 29 | 1, 28 | pm2.65da 816 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉‘𝐼) = ∅) → ¬ 𝐼 ≠ 𝐵) |
| 30 | | nne 2937 |
. . 3
⊢ (¬
𝐼 ≠ 𝐵 ↔ 𝐼 = 𝐵) |
| 31 | 29, 30 | sylib 218 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑉‘𝐼) = ∅) → 𝐼 = 𝐵) |
| 32 | | fveq2 6881 |
. . . 4
⊢ (𝐼 = 𝐵 → (𝑉‘𝐼) = (𝑉‘𝐵)) |
| 33 | 32 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉‘𝐼) = (𝑉‘𝐵)) |
| 34 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 35 | | sseq1 3989 |
. . . . . . . . 9
⊢ (𝑖 = 𝐵 → (𝑖 ⊆ 𝑗 ↔ 𝐵 ⊆ 𝑗)) |
| 36 | 35 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → (𝑖 ⊆ 𝑗 ↔ 𝐵 ⊆ 𝑗)) |
| 37 | 36 | rabbidv 3428 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑖 = 𝐵) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗}) |
| 38 | | eqid 2736 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 39 | 38, 22 | lidl1 21199 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅)) |
| 40 | 14 | rabex 5314 |
. . . . . . . 8
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗} ∈ V |
| 41 | 40 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗} ∈ V) |
| 42 | 34, 37, 39, 41 | fvmptd 6998 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑉‘𝐵) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗}) |
| 43 | | prmidlidl 33464 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅)) |
| 44 | 22, 38 | lidlss 21178 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (LIdeal‘𝑅) → 𝑗 ⊆ 𝐵) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ⊆ 𝐵) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵 ⊆ 𝑗) → 𝑗 ⊆ 𝐵) |
| 47 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵 ⊆ 𝑗) → 𝐵 ⊆ 𝑗) |
| 48 | 46, 47 | eqssd 3981 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵 ⊆ 𝑗) → 𝑗 = 𝐵) |
| 49 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 50 | 22, 49 | prmidlnr 33459 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ≠ 𝐵) |
| 51 | 50 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵 ⊆ 𝑗) → 𝑗 ≠ 𝐵) |
| 52 | 51 | neneqd 2938 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝐵 ⊆ 𝑗) → ¬ 𝑗 = 𝐵) |
| 53 | 48, 52 | pm2.65da 816 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ¬ 𝐵 ⊆ 𝑗) |
| 54 | 53 | ralrimiva 3133 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
∀𝑗 ∈
(PrmIdeal‘𝑅) ¬
𝐵 ⊆ 𝑗) |
| 55 | | rabeq0 4368 |
. . . . . . 7
⊢ ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗} = ∅ ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅) ¬ 𝐵 ⊆ 𝑗) |
| 56 | 54, 55 | sylibr 234 |
. . . . . 6
⊢ (𝑅 ∈ Ring → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝐵 ⊆ 𝑗} = ∅) |
| 57 | 42, 56 | eqtrd 2771 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑉‘𝐵) = ∅) |
| 58 | 21, 57 | syl 17 |
. . . 4
⊢ (𝑅 ∈ CRing → (𝑉‘𝐵) = ∅) |
| 59 | 58 | ad2antrr 726 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉‘𝐵) = ∅) |
| 60 | 33, 59 | eqtrd 2771 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (𝑉‘𝐼) = ∅) |
| 61 | 31, 60 | impbida 800 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉‘𝐼) = ∅ ↔ 𝐼 = 𝐵)) |