| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lssdimle | Structured version Visualization version GIF version | ||
| Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| lssdimle.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lssdimle | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssdimle.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslvec 21067 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec) |
| 4 | eqid 2735 | . . . . 5 ⊢ (LBasis‘𝑋) = (LBasis‘𝑋) | |
| 5 | 4 | lbsex 21126 | . . . 4 ⊢ (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅) |
| 7 | n0 4328 | . . 3 ⊢ ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) |
| 9 | hashss 14427 | . . . . 5 ⊢ ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) | |
| 10 | 9 | adantll 714 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) |
| 11 | 4 | dimval 33640 | . . . . . 6 ⊢ ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
| 12 | 3, 11 | sylan 580 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
| 13 | 12 | ad2antrr 726 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) = (♯‘𝑥)) |
| 14 | eqid 2735 | . . . . . 6 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
| 15 | 14 | dimval 33640 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤)) |
| 16 | 15 | ad5ant14 757 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑊) = (♯‘𝑤)) |
| 17 | 10, 13, 16 | 3brtr4d 5151 | . . 3 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| 18 | simpll 766 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec) | |
| 19 | lveclmod 21064 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 19 | ad2antrr 726 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod) |
| 21 | simplr 768 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
| 22 | simpr 484 | . . . . . . 7 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋)) | |
| 23 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 24 | 23, 4 | lbsss 21035 | . . . . . . 7 ⊢ (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋)) |
| 25 | 22, 24 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋)) |
| 26 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 27 | 26, 2 | lssss 20893 | . . . . . . 7 ⊢ (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
| 28 | 1, 26 | ressbas2 17259 | . . . . . . 7 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 29 | 21, 27, 28 | 3syl 18 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋)) |
| 30 | 25, 29 | sseqtrrd 3996 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ 𝑈) |
| 31 | 4 | lbslinds 21793 | . . . . . 6 ⊢ (LBasis‘𝑋) ⊆ (LIndS‘𝑋) |
| 32 | 31, 22 | sselid 3956 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋)) |
| 33 | 2, 1 | lsslinds 21791 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊))) |
| 34 | 33 | biimpa 476 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
| 35 | 20, 21, 30, 32, 34 | syl31anc 1375 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
| 36 | 14 | islinds4 21795 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤)) |
| 37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
| 38 | 18, 35, 37 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
| 39 | 17, 38 | r19.29a 3148 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| 40 | 8, 39 | exlimddv 1935 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ≤ cle 11270 ♯chash 14348 Basecbs 17228 ↾s cress 17251 LModclmod 20817 LSubSpclss 20888 LBasisclbs 21032 LVecclvec 21060 LIndSclinds 21765 dimcldim 33638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-r1 9778 df-rank 9779 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-tset 17290 df-ple 17291 df-ocomp 17292 df-0g 17455 df-mre 17598 df-mrc 17599 df-mri 17600 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-nzr 20473 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lbs 21033 df-lvec 21061 df-lindf 21766 df-linds 21767 df-dim 33639 |
| This theorem is referenced by: drngdimgt0 33658 |
| Copyright terms: Public domain | W3C validator |