![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssdimle | Structured version Visualization version GIF version |
Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
lssdimle.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
Ref | Expression |
---|---|
lssdimle | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssdimle.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | 1, 2 | lsslvec 21131 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec) |
4 | eqid 2740 | . . . . 5 ⊢ (LBasis‘𝑋) = (LBasis‘𝑋) | |
5 | 4 | lbsex 21190 | . . . 4 ⊢ (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅) |
6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅) |
7 | n0 4376 | . . 3 ⊢ ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) | |
8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) |
9 | hashss 14458 | . . . . 5 ⊢ ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) | |
10 | 9 | adantll 713 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) |
11 | 4 | dimval 33613 | . . . . . 6 ⊢ ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
12 | 3, 11 | sylan 579 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
13 | 12 | ad2antrr 725 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) = (♯‘𝑥)) |
14 | eqid 2740 | . . . . . 6 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
15 | 14 | dimval 33613 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤)) |
16 | 15 | ad5ant14 757 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑊) = (♯‘𝑤)) |
17 | 10, 13, 16 | 3brtr4d 5198 | . . 3 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) ≤ (dim‘𝑊)) |
18 | simpll 766 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec) | |
19 | lveclmod 21128 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
20 | 19 | ad2antrr 725 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod) |
21 | simplr 768 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
22 | simpr 484 | . . . . . . 7 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋)) | |
23 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
24 | 23, 4 | lbsss 21099 | . . . . . . 7 ⊢ (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋)) |
25 | 22, 24 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋)) |
26 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
27 | 26, 2 | lssss 20957 | . . . . . . 7 ⊢ (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
28 | 1, 26 | ressbas2 17296 | . . . . . . 7 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
29 | 21, 27, 28 | 3syl 18 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋)) |
30 | 25, 29 | sseqtrrd 4050 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ 𝑈) |
31 | 4 | lbslinds 21876 | . . . . . 6 ⊢ (LBasis‘𝑋) ⊆ (LIndS‘𝑋) |
32 | 31, 22 | sselid 4006 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋)) |
33 | 2, 1 | lsslinds 21874 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊))) |
34 | 33 | biimpa 476 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
35 | 20, 21, 30, 32, 34 | syl31anc 1373 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
36 | 14 | islinds4 21878 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤)) |
37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
38 | 18, 35, 37 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
39 | 17, 38 | r19.29a 3168 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
40 | 8, 39 | exlimddv 1934 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ≤ cle 11325 ♯chash 14379 Basecbs 17258 ↾s cress 17287 LModclmod 20880 LSubSpclss 20952 LBasisclbs 21096 LVecclvec 21124 LIndSclinds 21848 dimcldim 33611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-r1 9833 df-rank 9834 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-ocomp 17332 df-0g 17501 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lbs 21097 df-lvec 21125 df-lindf 21849 df-linds 21850 df-dim 33612 |
This theorem is referenced by: drngdimgt0 33631 |
Copyright terms: Public domain | W3C validator |