Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssdimle | Structured version Visualization version GIF version |
Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
lssdimle.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
Ref | Expression |
---|---|
lssdimle | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssdimle.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | 1, 2 | lsslvec 20367 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec) |
4 | eqid 2740 | . . . . 5 ⊢ (LBasis‘𝑋) = (LBasis‘𝑋) | |
5 | 4 | lbsex 20425 | . . . 4 ⊢ (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅) |
6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅) |
7 | n0 4286 | . . 3 ⊢ ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) |
9 | hashss 14122 | . . . . 5 ⊢ ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) | |
10 | 9 | adantll 711 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) |
11 | 4 | dimval 31682 | . . . . . 6 ⊢ ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
12 | 3, 11 | sylan 580 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
13 | 12 | ad2antrr 723 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) = (♯‘𝑥)) |
14 | eqid 2740 | . . . . . 6 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
15 | 14 | dimval 31682 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤)) |
16 | 15 | ad5ant14 755 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑊) = (♯‘𝑤)) |
17 | 10, 13, 16 | 3brtr4d 5111 | . . 3 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) ≤ (dim‘𝑊)) |
18 | simpll 764 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec) | |
19 | lveclmod 20366 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
20 | 19 | ad2antrr 723 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod) |
21 | simplr 766 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
22 | simpr 485 | . . . . . . 7 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋)) | |
23 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
24 | 23, 4 | lbsss 20337 | . . . . . . 7 ⊢ (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋)) |
25 | 22, 24 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋)) |
26 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
27 | 26, 2 | lssss 20196 | . . . . . . 7 ⊢ (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
28 | 1, 26 | ressbas2 16947 | . . . . . . 7 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
29 | 21, 27, 28 | 3syl 18 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋)) |
30 | 25, 29 | sseqtrrd 3967 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ 𝑈) |
31 | 4 | lbslinds 21038 | . . . . . 6 ⊢ (LBasis‘𝑋) ⊆ (LIndS‘𝑋) |
32 | 31, 22 | sselid 3924 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋)) |
33 | 2, 1 | lsslinds 21036 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊))) |
34 | 33 | biimpa 477 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
35 | 20, 21, 30, 32, 34 | syl31anc 1372 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
36 | 14 | islinds4 21040 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤)) |
37 | 36 | biimpa 477 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
38 | 18, 35, 37 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
39 | 17, 38 | r19.29a 3220 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
40 | 8, 39 | exlimddv 1942 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ≤ cle 11011 ♯chash 14042 Basecbs 16910 ↾s cress 16939 LModclmod 20121 LSubSpclss 20191 LBasisclbs 20334 LVecclvec 20362 LIndSclinds 21010 dimcldim 31680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-reg 9329 ax-inf2 9377 ax-ac2 10220 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-rpss 7570 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-oi 9247 df-r1 9523 df-rank 9524 df-dju 9660 df-card 9698 df-acn 9701 df-ac 9873 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-hash 14043 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-tset 16979 df-ple 16980 df-ocomp 16981 df-0g 17150 df-mre 17293 df-mrc 17294 df-mri 17295 df-acs 17296 df-proset 18011 df-drs 18012 df-poset 18029 df-ipo 18244 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-drng 19991 df-lmod 20123 df-lss 20192 df-lsp 20232 df-lbs 20335 df-lvec 20363 df-nzr 20527 df-lindf 21011 df-linds 21012 df-dim 31681 |
This theorem is referenced by: drngdimgt0 31697 |
Copyright terms: Public domain | W3C validator |