| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lssdimle | Structured version Visualization version GIF version | ||
| Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| lssdimle.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lssdimle | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssdimle.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslvec 21016 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec) |
| 4 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝑋) = (LBasis‘𝑋) | |
| 5 | 4 | lbsex 21075 | . . . 4 ⊢ (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅) |
| 7 | n0 4316 | . . 3 ⊢ ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) |
| 9 | hashss 14374 | . . . . 5 ⊢ ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) | |
| 10 | 9 | adantll 714 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) |
| 11 | 4 | dimval 33596 | . . . . . 6 ⊢ ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
| 12 | 3, 11 | sylan 580 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
| 13 | 12 | ad2antrr 726 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) = (♯‘𝑥)) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
| 15 | 14 | dimval 33596 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤)) |
| 16 | 15 | ad5ant14 757 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑊) = (♯‘𝑤)) |
| 17 | 10, 13, 16 | 3brtr4d 5139 | . . 3 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| 18 | simpll 766 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec) | |
| 19 | lveclmod 21013 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 19 | ad2antrr 726 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod) |
| 21 | simplr 768 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
| 22 | simpr 484 | . . . . . . 7 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋)) | |
| 23 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 24 | 23, 4 | lbsss 20984 | . . . . . . 7 ⊢ (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋)) |
| 25 | 22, 24 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋)) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 27 | 26, 2 | lssss 20842 | . . . . . . 7 ⊢ (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
| 28 | 1, 26 | ressbas2 17208 | . . . . . . 7 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 29 | 21, 27, 28 | 3syl 18 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋)) |
| 30 | 25, 29 | sseqtrrd 3984 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ 𝑈) |
| 31 | 4 | lbslinds 21742 | . . . . . 6 ⊢ (LBasis‘𝑋) ⊆ (LIndS‘𝑋) |
| 32 | 31, 22 | sselid 3944 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋)) |
| 33 | 2, 1 | lsslinds 21740 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊))) |
| 34 | 33 | biimpa 476 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
| 35 | 20, 21, 30, 32, 34 | syl31anc 1375 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
| 36 | 14 | islinds4 21744 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤)) |
| 37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
| 38 | 18, 35, 37 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
| 39 | 17, 38 | r19.29a 3141 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| 40 | 8, 39 | exlimddv 1935 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ≤ cle 11209 ♯chash 14295 Basecbs 17179 ↾s cress 17200 LModclmod 20766 LSubSpclss 20837 LBasisclbs 20981 LVecclvec 21009 LIndSclinds 21714 dimcldim 33594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-r1 9717 df-rank 9718 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-ocomp 17241 df-0g 17404 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-nzr 20422 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lbs 20982 df-lvec 21010 df-lindf 21715 df-linds 21716 df-dim 33595 |
| This theorem is referenced by: drngdimgt0 33614 |
| Copyright terms: Public domain | W3C validator |