Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssdimle | Structured version Visualization version GIF version |
Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
lssdimle.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
Ref | Expression |
---|---|
lssdimle | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssdimle.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | 1, 2 | lsslvec 20284 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec) |
4 | eqid 2738 | . . . . 5 ⊢ (LBasis‘𝑋) = (LBasis‘𝑋) | |
5 | 4 | lbsex 20342 | . . . 4 ⊢ (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅) |
6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅) |
7 | n0 4277 | . . 3 ⊢ ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋)) |
9 | hashss 14052 | . . . . 5 ⊢ ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) | |
10 | 9 | adantll 710 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (♯‘𝑥) ≤ (♯‘𝑤)) |
11 | 4 | dimval 31588 | . . . . . 6 ⊢ ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
12 | 3, 11 | sylan 579 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥)) |
13 | 12 | ad2antrr 722 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) = (♯‘𝑥)) |
14 | eqid 2738 | . . . . . 6 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
15 | 14 | dimval 31588 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤)) |
16 | 15 | ad5ant14 754 | . . . 4 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑊) = (♯‘𝑤)) |
17 | 10, 13, 16 | 3brtr4d 5102 | . . 3 ⊢ (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥 ⊆ 𝑤) → (dim‘𝑋) ≤ (dim‘𝑊)) |
18 | simpll 763 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec) | |
19 | lveclmod 20283 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
20 | 19 | ad2antrr 722 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod) |
21 | simplr 765 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
22 | simpr 484 | . . . . . . 7 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋)) | |
23 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
24 | 23, 4 | lbsss 20254 | . . . . . . 7 ⊢ (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋)) |
25 | 22, 24 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋)) |
26 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
27 | 26, 2 | lssss 20113 | . . . . . . 7 ⊢ (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
28 | 1, 26 | ressbas2 16875 | . . . . . . 7 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
29 | 21, 27, 28 | 3syl 18 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋)) |
30 | 25, 29 | sseqtrrd 3958 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ 𝑈) |
31 | 4 | lbslinds 20950 | . . . . . 6 ⊢ (LBasis‘𝑋) ⊆ (LIndS‘𝑋) |
32 | 31, 22 | sselid 3915 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋)) |
33 | 2, 1 | lsslinds 20948 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊))) |
34 | 33 | biimpa 476 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥 ⊆ 𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
35 | 20, 21, 30, 32, 34 | syl31anc 1371 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊)) |
36 | 14 | islinds4 20952 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤)) |
37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
38 | 18, 35, 37 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥 ⊆ 𝑤) |
39 | 17, 38 | r19.29a 3217 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
40 | 8, 39 | exlimddv 1939 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≤ cle 10941 ♯chash 13972 Basecbs 16840 ↾s cress 16867 LModclmod 20038 LSubSpclss 20108 LBasisclbs 20251 LVecclvec 20279 LIndSclinds 20922 dimcldim 31586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rpss 7554 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-r1 9453 df-rank 9454 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ocomp 16909 df-0g 17069 df-mre 17212 df-mrc 17213 df-mri 17214 df-acs 17215 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lbs 20252 df-lvec 20280 df-nzr 20442 df-lindf 20923 df-linds 20924 df-dim 31587 |
This theorem is referenced by: drngdimgt0 31603 |
Copyright terms: Public domain | W3C validator |