Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssdimle Structured version   Visualization version   GIF version

Theorem lssdimle 31027
Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
lssdimle.x 𝑋 = (𝑊s 𝑈)
Assertion
Ref Expression
lssdimle ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊))

Proof of Theorem lssdimle
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lssdimle.x . . . . 5 𝑋 = (𝑊s 𝑈)
2 eqid 2824 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31, 2lsslvec 19865 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ LVec)
4 eqid 2824 . . . . 5 (LBasis‘𝑋) = (LBasis‘𝑋)
54lbsex 19923 . . . 4 (𝑋 ∈ LVec → (LBasis‘𝑋) ≠ ∅)
63, 5syl 17 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (LBasis‘𝑋) ≠ ∅)
7 n0 4291 . . 3 ((LBasis‘𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝑋))
86, 7sylib 221 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ∃𝑥 𝑥 ∈ (LBasis‘𝑋))
9 hashss 13764 . . . . 5 ((𝑤 ∈ (LBasis‘𝑊) ∧ 𝑥𝑤) → (♯‘𝑥) ≤ (♯‘𝑤))
109adantll 713 . . . 4 (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥𝑤) → (♯‘𝑥) ≤ (♯‘𝑤))
114dimval 31022 . . . . . 6 ((𝑋 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥))
123, 11sylan 583 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) = (♯‘𝑥))
1312ad2antrr 725 . . . 4 (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥𝑤) → (dim‘𝑋) = (♯‘𝑥))
14 eqid 2824 . . . . . 6 (LBasis‘𝑊) = (LBasis‘𝑊)
1514dimval 31022 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝑊)) → (dim‘𝑊) = (♯‘𝑤))
1615ad5ant14 757 . . . 4 (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥𝑤) → (dim‘𝑊) = (♯‘𝑤))
1710, 13, 163brtr4d 5079 . . 3 (((((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) ∧ 𝑤 ∈ (LBasis‘𝑊)) ∧ 𝑥𝑤) → (dim‘𝑋) ≤ (dim‘𝑊))
18 simpll 766 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LVec)
19 lveclmod 19864 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2019ad2antrr 725 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑊 ∈ LMod)
21 simplr 768 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 ∈ (LSubSp‘𝑊))
22 simpr 488 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LBasis‘𝑋))
23 eqid 2824 . . . . . . . 8 (Base‘𝑋) = (Base‘𝑋)
2423, 4lbsss 19835 . . . . . . 7 (𝑥 ∈ (LBasis‘𝑋) → 𝑥 ⊆ (Base‘𝑋))
2522, 24syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ⊆ (Base‘𝑋))
26 eqid 2824 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2726, 2lssss 19694 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
281, 26ressbas2 16544 . . . . . . 7 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
2921, 27, 283syl 18 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑈 = (Base‘𝑋))
3025, 29sseqtrrd 3992 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥𝑈)
314lbslinds 20963 . . . . . 6 (LBasis‘𝑋) ⊆ (LIndS‘𝑋)
3231, 22sseldi 3949 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑋))
332, 1lsslinds 20961 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥𝑈) → (𝑥 ∈ (LIndS‘𝑋) ↔ 𝑥 ∈ (LIndS‘𝑊)))
3433biimpa 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑥𝑈) ∧ 𝑥 ∈ (LIndS‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊))
3520, 21, 30, 32, 34syl31anc 1370 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → 𝑥 ∈ (LIndS‘𝑊))
3614islinds4 20965 . . . . 5 (𝑊 ∈ LVec → (𝑥 ∈ (LIndS‘𝑊) ↔ ∃𝑤 ∈ (LBasis‘𝑊)𝑥𝑤))
3736biimpa 480 . . . 4 ((𝑊 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝑊)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥𝑤)
3818, 35, 37syl2anc 587 . . 3 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → ∃𝑤 ∈ (LBasis‘𝑊)𝑥𝑤)
3917, 38r19.29a 3281 . 2 (((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ 𝑥 ∈ (LBasis‘𝑋)) → (dim‘𝑋) ≤ (dim‘𝑊))
408, 39exlimddv 1937 1 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wne 3013  wrex 3133  wss 3918  c0 4274   class class class wbr 5047  cfv 6336  (class class class)co 7138  cle 10661  chash 13684  Basecbs 16472  s cress 16473  LModclmod 19620  LSubSpclss 19689  LBasisclbs 19832  LVecclvec 19860  LIndSclinds 20935  dimcldim 31020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-reg 9040  ax-inf2 9088  ax-ac2 9870  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-rpss 7432  df-om 7564  df-1st 7672  df-2nd 7673  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-xnn0 11954  df-z 11968  df-dec 12085  df-uz 12230  df-fz 12884  df-hash 13685  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-sca 16570  df-vsca 16571  df-tset 16573  df-ple 16574  df-ocomp 16575  df-0g 16704  df-mre 16846  df-mrc 16847  df-mri 16848  df-acs 16849  df-proset 17527  df-drs 17528  df-poset 17545  df-ipo 17751  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-grp 18095  df-minusg 18096  df-sbg 18097  df-subg 18265  df-cmn 18897  df-abl 18898  df-mgp 19229  df-ur 19241  df-ring 19288  df-oppr 19362  df-dvdsr 19380  df-unit 19381  df-invr 19411  df-drng 19490  df-lmod 19622  df-lss 19690  df-lsp 19730  df-lbs 19833  df-lvec 19861  df-nzr 20017  df-lindf 20936  df-linds 20937  df-dim 31021
This theorem is referenced by:  drngdimgt0  31037
  Copyright terms: Public domain W3C validator